login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(1) = 0, and for n > 1, a(n) = A276150(n) + a(A064989(n)).
2

%I #6 Mar 31 2019 00:17:18

%S 0,1,3,2,6,2,8,2,5,6,12,3,15,9,6,4,20,5,24,7,11,13,30,5,10,17,8,12,37,

%T 3,39,2,12,18,10,4,42,23,17,7,47,9,51,12,8,29,57,5,15,10,23,18,64,7,

%U 17,12,25,37,72,4,75,40,11,4,17,12,79,19,28,11,85,6,90,44,11,26,17,18,96,9,11,49,104,12,24,54,37,16,113,6

%N a(1) = 0, and for n > 1, a(n) = A276150(n) + a(A064989(n)).

%H Antti Karttunen, <a href="/A324890/b324890.txt">Table of n, a(n) for n = 1..30030</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(1) = 0, and for n > 1, a(n) = A276150(n) + a(A064989(n)).

%F a(n) = A001222(A324889(n)).

%F For n >= 0, a(A002110(n)) = n.

%o (PARI)

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A276150(n) = { my(s=0,m); forprime(p=2, , if(!n, return(s)); m = n%p; s += m; n = (n-m)/p); };

%o A324890(n) = if(1==n,0,A276150(n) + A324890(A064989(n)));

%Y Cf. A001222, A002110, A064989, A276150, A324889.

%K nonn

%O 1,3

%A _Antti Karttunen_, Mar 30 2019