Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 19 2019 23:01:17
%S 0,1,3,2,7,7,15,4,5,11,31,12,63,31,14,8,127,13,255,28,27,49,511,24,27,
%T 109,8,60,1023,24,2047,16,42,209,30,28,4095,511,114,32,8191,43,16383,
%U 110,17,737,32767,48,51,9,134,210,65535,24,47,108,498,1771,131071,38,262143,3409,36,32,70,94,524287,386,762,42,1048575,52,2097151,7933,11
%N Xor-Moebius transform of A324866, where A324866(n) = A156552(n) OR (A323243(n) - A156552(n)).
%C It seems that the records, which are A000225(n) = 2^n - 1 occur at primes, as occur also the records for the width of terms, A000523(a(n)), and the records for the binary weights of terms, A000120(a(n)).
%H Antti Karttunen, <a href="/A324876/b324876.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(A000040(n)) = A000225(n).
%o (PARI)
%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
%o A318456(n) = bitor(n,sigma(n)-n);
%o A324866(n) = if(1==n,0,A318456(A156552(n)));
%o A324876(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A324866(d)))); (v); };
%Y Cf. A156552, A323243, A324820, A324821, A324866, A324877, A324878.
%K nonn
%O 1,3
%A _Antti Karttunen_, Mar 18 2019