login
a(n) = A156552(n) XOR A324865(n), where XOR is bitwise-xor, A003987.
6

%I #8 Mar 18 2019 21:49:45

%S 0,1,3,2,7,4,15,6,0,13,31,10,63,16,2,6,127,12,255,18,7,46,511,22,28,

%T 82,4,46,1023,30,2047,30,54,174,2,22,4095,256,12,54,8191,36,16383,66,

%U 24,798,32767,46,60,31,248,130,65535,28,19,70,12,1300,131071,42,262143,2734,48,22,126,94,524287,302,774,40,1048575,38,2097151,4354,10

%N a(n) = A156552(n) XOR A324865(n), where XOR is bitwise-xor, A003987.

%H Antti Karttunen, <a href="/A324867/b324867.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(1) = 0; for n > 1, a(n) = A318457(A156552(n)).

%F a(n) = A156552(n) XOR (A323243(n) - A156552(n)).

%F a(n) = A323243(n) - 2*A324398(n).

%o (PARI)

%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552

%o A318457(n) = bitxor(n,sigma(n)-n);

%o A324867(n) = if(1==n,0,A318457(A156552(n)));

%o (PARI) A324867(n) = { my(k=A156552(n)); bitxor(k,(A323243(n)-k)); }; \\ Needs also code from A323243.

%Y Cf. A001065, A003986, A156552, A318457, A323243, A324865, A324866, A324398, A324877.

%K nonn

%O 1,3

%A _Antti Karttunen_, Mar 18 2019