login
a(n) = A323243(n) - A156552(n).
5

%I #5 Mar 18 2019 21:49:25

%S 0,0,1,1,3,1,7,1,6,4,15,1,31,1,8,9,63,1,127,1,21,15,255,1,16,19,10,13,

%T 511,11,1023,1,20,47,22,13,2047,1,78,17,4095,1,8191,1,14,287,16383,1,

%U 36,6,122,1,32767,1,55,1,270,277,65535,1,131071,687,22,41,58,27,262143,45,260,1,524287,17,1048575,259,16

%N a(n) = A323243(n) - A156552(n).

%H Antti Karttunen, <a href="/A324865/b324865.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(1) = 0; for n > 1, a(n) = A001065(A156552(n)).

%F a(n) = A323243(n) - A156552(n).

%o (PARI)

%o A001065(n) = (sigma(n)-n);

%o A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552

%o A324865(n) = if(1==n,0,A001065(A156552(n)));

%o (PARI) A324865(n) = (A323243(n) - A156552(n)); \\ Needs also code from A323243.

%Y Cf. A001065, A156552, A323243, A324866, A324867, A324868.

%K nonn

%O 1,5

%A _Antti Karttunen_, Mar 18 2019