login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324836
Decimal expansion of eta_5, a constant related to the asymptotic density of certain sets of residues.
5
4, 1, 4, 5, 8, 7, 3, 4, 7, 5, 2, 5, 8, 9, 5, 6, 1, 9, 5, 3, 2, 4, 6, 7, 8, 8, 7, 0, 5, 9, 0, 5, 1, 7, 8, 1, 7, 5, 4, 1, 9, 3, 1, 4, 0, 5, 6, 2, 2, 8, 7, 9, 2, 9, 9, 5, 5, 7, 8, 8, 1, 3, 1, 2, 8, 0, 6, 4, 9, 6, 5, 3, 8, 8, 4, 7, 0, 0, 9, 6, 9, 7, 9, 1, 4, 6, 8, 1, 6, 9, 9, 7, 8, 5, 5, 0, 3, 5, 1, 4, 7, 9
OFFSET
-2,1
LINKS
Carl Pomerance, Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory. 2011. Vol. 1. Iss. 1. pp. 52-66. See p. 62.
FORMULA
Sum_{p prime} 1/(p^2-1)^5.
Sum_{n>0} (n(n-1)(n-2)(n-3)/24) P(2n+2) where P is the prime zeta P function.
EXAMPLE
0.0041458734752589561953246788705905178175419314056228792995578813128...
MATHEMATICA
digits = 102; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta5 = Sum[n(n-1)(n-2)(n-3)/24 PrimeZetaP[2n+2], {n, 1, m}], 10, digits][[1]]; rd[m0]; rd[m = 2 m0]; While[rd[m] != rd[m - m0], Print[m]; m = m + m0]; Print[N[eta5, digits]]; rd[m]
CROSSREFS
Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4).
Sequence in context: A093561 A286327 A081773 * A302151 A167431 A205848
KEYWORD
nonn,cons
AUTHOR
STATUS
approved