login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(n) - gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).
4

%I #9 Feb 16 2019 20:40:07

%S 0,2,2,6,4,0,6,14,12,16,10,24,12,16,12,30,16,36,18,36,28,32,22,48,30,

%T 40,36,0,28,48,30,60,36,52,44,90,36,56,52,80,40,48,42,72,72,64,46,120,

%U 54,90,60,96,52,96,68,112,76,88,58,144,60,88,102,126,80,96,66,120,84,128,70,192,72,112,122,136,92,144,78,184,120,124,82

%N a(n) = sigma(n) - gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).

%H Antti Karttunen, <a href="/A324122/b324122.txt">Table of n, a(n) for n = 1..10080</a>

%H Antti Karttunen, <a href="/A324122/a324122.txt">Data supplement: n, a(n) computed for n = 1..117800</a>

%F a(n) = A000203(n) - A324121(n) = A000203(n) - gcd(A000203(n), A038040(n)).

%o (PARI) A324122(n) = (sigma(n) - gcd(sigma(n),n*numdiv(n)));

%Y Cf. A000005, A000203, A038040, A106315, A106316, A324045, A324046, A324047, A324121.

%Y Cf. A001599 (positions of zeros).

%K nonn

%O 1,2

%A _Antti Karttunen_, Feb 15 2019