The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324038 Irregular triangle T read by rows: Row n gives the vertex labels of level n of the tree related to the modified reduced Collatz map A324036. 5
 1, 5, 3, 21, 13, 85, 17, 53, 113, 341, 11, 69, 35, 213, 75, 453, 227, 1365, 7, 45, 277, 23, 141, 853, 301, 1813, 151, 909, 5461, 9, 29, 181, 369, 1109, 15, 93, 565, 1137, 3413, 401, 1205, 2417, 7253, 201, 605, 3637, 7281, 21845, 37, 19, 117, 241, 725, 1477, 739, 4437, 61, 373, 753, 2261, 4549, 2275, 13653, 267, 1605, 803, 4821, 1611, 9669, 4835, 29013, 805, 403, 2421, 4849, 14549, 29125, 14563, 87381 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The length of row n is A324039, for n >= 0. The branches of this incomplete binary tree, called CfsTree, give the iterations of the vertex labels of level n of the modified reduced Collatz map Cfs defined by  Cfs(2*k+1) = A32406(k), for k >= 0, until at level n = 0 the label 1 is reached for the first time. The out-degree of a vertex label T(n, k), for  n >= 1, is 1 if T(n, k) == 3 (mod 6) and 2 for all other vertices. For level n = 0 with vertex label 1 this rule does not hold, it has out-degree 1, not 2. The number of vertex labels on level n which are 3 (mod 6) is given by A324040(n). The corresponding tree with nonnegative vertex labels t(n, k) = (T(n,k) - 1)/2 is given in A324246. The Collatz conjecture is that all positive odd integers appear in this CfsTree. Because the sets of labels on the levels are pairwise disjoint these odd  numbers will then appear just once. For this tree see Figure 1 in the Vaillant-Delarue link. It is also shown in the W. Lang link. LINKS Wolfdieter Lang, Collatz Trees from Vaillant-Delarue Maps Nicolas Vaillant and Philippe Delarue, The hidden face of the 3x+1 problem. Part I: Intrinsic algorithm, April 26 2019. FORMULA Recurrence: CfsTree(n), the list of vertex labels {T(n, k), for k = 1..A324038(n)} of level n, is obtained from:  CfsTree(0) = {1}, CfsTree(1) = {5}, and for n >= 2, CfsTree(n) = {2*m + 1 >= 1: fs(2*m+1) = T(n-1, k)), for k = 1..A324038(n-1)}, with fs from A324036. Explicit form for the successor(s) of T(n, k) on level n+1, for n >= 1:   a vertex label with T(n, k) == 3 (mod 6) produces the label 4*T(n, k) + 1 on level n+1; label T(n, k) == 1 (mod 6) produces the two labels (4*T(n, k) - 1)/3 and 4*T(n, k) + 1;  label T(n, k) == 5 (mod 6) produces the two labels (2*T(n, k) - 1)/3 and 4*T(n, k) + 1. EXAMPLE The irregular triangle T begins (the brackets combine pairs coming from out-degree 2 vertices of the preceding level): n/k   1  2     3   4     5    6     7    8    9  10    11 ... ------------------------------------------------------------- 0:   1 1:   5 2:  (3  21) 3:  13  85 4:  (17 53) (113 341) 5:  (11 69)  (35 213)  (75  453) (227 1365) 6:  ( 7 45)  277 (23   141) 853   301 1813 (151 909) 5461 ... Row n = 7: (9 29) 181 (369 1109) (15 93)  565 (1137  3413) (401 1205) (2417 7253) (201 605) 3637 (7281 21845); Row n = 8: 37 (19 117) (241 725) 1477 (739 4437) 61 373 (753 2261) 4549 (2275 13653) (267 1605) (803 4821) (1611 9669) (4835 29013) 805 (403 2421) (4849 14549) 29125 (14563 87381). ... The successors of T(1,1) = 5 == 5 (mod 6) are (2*5 - 1)/3 = 3 and 4*5 + 1 = 21. The successor of T(2, 1) = 3 == 3 (mod 6) is 4*3 + 1 = 13. The successors of T(3, 1) = 13 == 1 (mod 6) are (4*13 - 1)/3 = 17 and 4*13 + 1 = 53. CROSSREFS Cf. A324036, A324039, A324040, A324246. Sequence in context: A072800 A199637 A199636 * A221473 A199638 A296356 Adjacent sequences:  A324035 A324036 A324037 * A324039 A324040 A324041 KEYWORD nonn,easy,tabf AUTHOR Nicolas Vaillant, Philippe Delarue, Wolfdieter Lang, May 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 20:17 EDT 2021. Contains 346294 sequences. (Running on oeis4.)