

A323898


Lexicographically earliest sequence such that a(i) = a(j) => A000120(i) = A000120(j) and A083254(i) = A083254(j), for all i, j >= 1.


3



1, 2, 3, 2, 4, 5, 6, 2, 4, 5, 7, 8, 9, 10, 11, 2, 12, 13, 14, 8, 15, 10, 16, 17, 18, 10, 19, 20, 21, 22, 23, 2, 24, 5, 25, 26, 27, 10, 19, 17, 28, 29, 30, 20, 31, 32, 33, 34, 27, 35, 36, 20, 37, 38, 39, 40, 41, 32, 42, 43, 44, 45, 46, 2, 47, 48, 49, 8, 50, 51, 52, 53, 54, 10, 55, 20, 56, 57, 58, 34, 59, 10, 60, 61, 56, 32, 39, 40, 62, 63, 64, 65, 66, 45, 67, 68, 69, 70, 16
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Restricted growth sequence transform of the ordered pair [A000120(n), A083254(n)].


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537
Index entries for sequences related to binary expansion of n


FORMULA

a(2^n) = 2 for all n >= 1.


PROG

(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A083254(n) = (2*eulerphi(n)n);
A323898aux(n) = [hammingweight(n), A083254(n)];
v323898 = rgs_transform(vector(up_to, n, A323898aux(n)));
A323898(n) = v323898[n];


CROSSREFS

Cf. A000120, A083254.
Cf. also A318310, A323892, A323898.
Sequence in context: A295876 A322590 A325381 * A323234 A324531 A323897
Adjacent sequences: A323895 A323896 A323897 * A323899 A323900 A323901


KEYWORD

nonn


AUTHOR

Antti Karttunen, Feb 09 2019


STATUS

approved



