Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Oct 03 2019 08:38:52
%S 1,2,2,2,3,4,5,6,6,6,7,8,9,10,10,10,11,12,13,14,14,14,15,16,17,18,18,
%T 18,19,20,21,22,22,22,23,24,25,26,26,26,27,28,29,30,30,30,31,32,33,34,
%U 34,34,35,36,37,38,38,38,39,40,41,42,42,42,43,44,45,46,46,46
%N a(n) is the largest minimal distance of a binary LCD [n,2] code.
%C See Dougherty link for a definition of LCD code.
%H Colin Barker, <a href="/A323735/b323735.txt">Table of n, a(n) for n = 2..1000</a>
%H Steven T. Dougherty et al., <a href="https://arxiv.org/abs/1506.01955">The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices</a>, arXiv:1506.01955 [cs.IT], 2015.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-2,2,-1).
%F a(n) = 4*r + floor(s/6)*(1 + (s mod 6)) + 2, where n = 6*r + s, r is integer and 3 <= s <= 8.
%F a(n) = 4 + a(n-6) for n > 7.
%F a(n) = (12*n - 12 - 9*cos(n*Pi/3) + 3*cos(2*n*Pi/3) + 3*sqrt(3)*sin(n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/18. - _Wesley Ivan Hurt_, Aug 31 2019
%F From _Colin Barker_, Sep 01 2019: (Start)
%F G.f.: x^2*(1 + x^4) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).
%F a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>7.
%F (End)
%F E.g.f.: 1+(1/18)*exp(-x/2)*(12*exp(3*x/2)*(-1+x)+(3-9*exp(x))*cos(sqrt(3)*x/2)*sqrt(3)*(1+3*exp(x))*sin(sqrt(3)*x/2)). - _Stefano Spezia_, Sep 04 2019
%e For n = 2, a(n) = 1 since the largest minimal distance of a binary LCD [2,2] code is 1.
%t CoefficientList[Series[(1 + x^4)/((1 - x)^2*(1 - x + x^2) (1 + x + x^2)), {x, 0, 60}], x] (* _Michael De Vlieger_, Sep 29 2019 *)
%o (PARI) a(n)={my(r=(n-3)\6, s=3+(n-3)%6); 4*r + floor(s/6)*(1 + s%6) + 2} \\ _Andrew Howroyd_, Aug 31 2019
%o (PARI) Vec(x^2*(1 + x^4) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^80)) \\ _Colin Barker_, Sep 01 2019
%K nonn,easy
%O 2,2
%A _Hamid Kulosman_, Aug 31 2019