login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323735
a(n) is the largest minimal distance of a binary LCD [n,2] code.
1
1, 2, 2, 2, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 10, 10, 11, 12, 13, 14, 14, 14, 15, 16, 17, 18, 18, 18, 19, 20, 21, 22, 22, 22, 23, 24, 25, 26, 26, 26, 27, 28, 29, 30, 30, 30, 31, 32, 33, 34, 34, 34, 35, 36, 37, 38, 38, 38, 39, 40, 41, 42, 42, 42, 43, 44, 45, 46, 46, 46
OFFSET
2,2
COMMENTS
See Dougherty link for a definition of LCD code.
FORMULA
a(n) = 4*r + floor(s/6)*(1 + (s mod 6)) + 2, where n = 6*r + s, r is integer and 3 <= s <= 8.
a(n) = 4 + a(n-6) for n > 7.
a(n) = (12*n - 12 - 9*cos(n*Pi/3) + 3*cos(2*n*Pi/3) + 3*sqrt(3)*sin(n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/18. - Wesley Ivan Hurt, Aug 31 2019
From Colin Barker, Sep 01 2019: (Start)
G.f.: x^2*(1 + x^4) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>7.
(End)
E.g.f.: 1+(1/18)*exp(-x/2)*(12*exp(3*x/2)*(-1+x)+(3-9*exp(x))*cos(sqrt(3)*x/2)*sqrt(3)*(1+3*exp(x))*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 04 2019
EXAMPLE
For n = 2, a(n) = 1 since the largest minimal distance of a binary LCD [2,2] code is 1.
MATHEMATICA
CoefficientList[Series[(1 + x^4)/((1 - x)^2*(1 - x + x^2) (1 + x + x^2)), {x, 0, 60}], x] (* Michael De Vlieger, Sep 29 2019 *)
PROG
(PARI) a(n)={my(r=(n-3)\6, s=3+(n-3)%6); 4*r + floor(s/6)*(1 + s%6) + 2} \\ Andrew Howroyd, Aug 31 2019
(PARI) Vec(x^2*(1 + x^4) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Sep 01 2019
CROSSREFS
Sequence in context: A051918 A365718 A163801 * A233583 A309689 A029049
KEYWORD
nonn,easy
AUTHOR
Hamid Kulosman, Aug 31 2019
STATUS
approved