login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323724 a(n) = n*(2*(n - 2)*n + (-1)^n + 3)/4. 5
0, 0, 2, 6, 20, 40, 78, 126, 200, 288, 410, 550, 732, 936, 1190, 1470, 1808, 2176, 2610, 3078, 3620, 4200, 4862, 5566, 6360, 7200, 8138, 9126, 10220, 11368, 12630, 13950, 15392, 16896, 18530, 20230, 22068, 23976, 26030, 28158, 30440, 32800, 35322, 37926, 40700 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n > 1, a(n) is the superdiagonal sum of the matrix M(n) whose permanent is A322277(n).

All the terms of this sequence are even numbers (A005843), but do not end with 4.

LINKS

Stefano Spezia, Table of n, a(n) for n = 0..10000

Christian Krause, LODA, an assembly language, a computational model and a tool for mining integer sequences

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).

FORMULA

O.g.f.: 2*x^2*(1 + x + 3*x^2 + x^3)/((1 - x)^4*(1 + x)^2).

E.g.f.: (1/2)*x*(exp(x)*x*(1 + x) + sinh(x)).

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5.

a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*floor(n/2)^2.

a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*A004526(n) + 2*A000290(A004526(n)).

a(n) = (n/2)*((n - 1)^2 + 1) for even n; a(n) = (n/2)*(n - 1)^2 otherwise. - Bruno Berselli, Feb 06 2019

a(n) = 2*A004526(n*A000982(n-1)). [Found by Christian Krause's LODA miner] - Stefano Spezia, Dec 12 2021

a(n) = 2*A005997(n-1) for n >= 2. - Hugo Pfoertner, Dec 13 2021

MAPLE

a:=n->(1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2: seq(a(n), n=0..50);

MATHEMATICA

a[n_] := 1/2 (-1 + n)^2 n - (-1 + n) Floor[n/2] + 2 Floor[n/2]^2; Array[a, 50, 0];

Table[n (2 (n - 2) n + (-1)^n + 3)/4, {n, 0, 50}] (* Bruno Berselli, Feb 06 2019 *)

PROG

(GAP) Flat(List([0..50], n->(1/2)*(-1 + n)^2*n - (-1 + n)*Int(n/2) + 2*(Int(n/2))^2));

(Magma) [(1/2)*(-1 + n)^2*n - (-1 + n)*Floor(n/2) + 2*(Floor(n/2))^2: n in [0..50]];

(Maxima) makelist((1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2, n, 0, 50);

(PARI) a(n) = (1/2)*(-1 + n)^2*n - (-1 + n)*floor(n/2) + 2*(floor(n/2))^2;

(PARI) T(i, j, n) = if (i %2, j + n*(i-1), n*i - j + 1);

a(n) = sum(k=1, n-1, T(k, k+1, n)); \\ Michel Marcus, Feb 06 2019

(Python) [int((1/2)*(-1 + n)**2*n - (-1 + n)*int(n/2) + 2*(int(n/2))**2) for n in range(0, 50)]

CROSSREFS

Cf. A000290, A000982, A004526, A005843, A005997, A317614, A322277, A323723, A325516.

Sequence in context: A202963 A130315 A087150 * A214307 A087134 A036689

Adjacent sequences: A323721 A323722 A323723 * A323725 A323726 A323727

KEYWORD

nonn,easy

AUTHOR

Stefano Spezia, Jan 25 2019

EXTENSIONS

Definition by Bruno Berselli, Feb 06 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 21:00 EST 2022. Contains 358648 sequences. (Running on oeis4.)