login
A323657
Number of strict solid partitions of n.
3
1, 1, 1, 4, 4, 7, 16, 19, 28, 40, 82, 94, 145, 190, 274, 463, 580, 802, 1096, 1486, 1948
OFFSET
0,4
COMMENTS
A strict solid partition is an infinite three-dimensional array of distinct positive integers (and any number of zeros) summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros.
EXAMPLE
The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:
((1)) ((2)) ((3)) ((4)) ((5)) ((6))
((21)) ((31)) ((32)) ((42))
((2)(1)) ((3)(1)) ((41)) ((51))
((2))((1)) ((3))((1)) ((3)(2)) ((321))
((4)(1)) ((4)(2))
((3))((2)) ((5)(1))
((4))((1)) ((31)(2))
((32)(1))
((4))((2))
((5))((1))
((31))((2))
((3)(2)(1))
((32))((1))
((3)(1))((2))
((3)(2))((1))
((3))((2))((1))
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y], And[And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&], {y, Select[IntegerPartitions[n], UnsameQ@@#&]}]
Table[Length[Join@@Table[Select[Tuples[strplptns/@y], And[UnsameQ@@Flatten[#], And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#, {n, n}]&/@#)])]&], {y, IntegerPartitions[n]}]], {n, 10}]
CROSSREFS
Cf. A000219, A000293 (solid partitions), A000334, A001970, A002974, A114736, A117433 (strict plane partitions), A321662, A323657.
Sequence in context: A284640 A036605 A183541 * A238389 A115292 A202676
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 22 2019
STATUS
approved