The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323601 Decimal expansion of sin(Pi/7). 4
 4, 3, 3, 8, 8, 3, 7, 3, 9, 1, 1, 7, 5, 5, 8, 1, 2, 0, 4, 7, 5, 7, 6, 8, 3, 3, 2, 8, 4, 8, 3, 5, 8, 7, 5, 4, 6, 0, 9, 9, 9, 0, 7, 2, 7, 7, 8, 7, 4, 5, 9, 8, 7, 6, 4, 4, 4, 5, 4, 7, 3, 0, 3, 5, 3, 2, 2, 0, 3, 2, 5, 1, 6, 5, 3, 1, 9, 8, 4, 2, 1, 5, 2, 0, 7, 8, 4, 0, 2, 1, 7, 7, 4, 4, 5, 6, 1, 0, 2, 0, 8, 8, 7, 4, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 FORMULA Root of the equation 64*x^6 - 112*x^4 + 56*x^2 - 7 = 0. Equals sqrt((196 + 7*i*2^(2/3)*(21*i*sqrt(3) - 7)^(1/3)*(i + sqrt(3)) + i*2^(4/3)*(21*i*sqrt(3) - 7)^(2/3)*(2*i + sqrt(3)))/336), where i is the imaginary unit. Equals cos(5*Pi/14). From Gleb Koloskov, Jul 15 2021: (Start) Positive root of the equation x^3 + sqrt(7)/2*x^2 - sqrt(7)/8 = 0. Equals ((4*sqrt(7)*(13+3*sqrt(3)*i))^(1/3)+28*(4*sqrt(7)*(13+3*sqrt(3)*i))^(-1/3)-2*sqrt(7))/12, where i is the imaginary unit. (End) EXAMPLE 0.43388373911755812047576833284835875460999072778745987644454730353220325... MATHEMATICA RealDigits[Sin[Pi/7], 10, 120][[1]] PROG (PARI) default(realprecision, 100); sin(Pi/7) \\ G. C. Greubel, Feb 08 2019 (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Sin(Pi(R)/7); // G. C. Greubel, Feb 08 2019 (Sage) numerical_approx(sin(pi/7), digits=100) # G. C. Greubel, Feb 08 2019 CROSSREFS Cf. A019829 (sin(Pi/9), A232736 (sin(Pi/14)). Sequence in context: A155835 A138187 A105342 * A055525 A309046 A007568 Adjacent sequences:  A323598 A323599 A323600 * A323602 A323603 A323604 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, Jan 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 07:52 EST 2021. Contains 349401 sequences. (Running on oeis4.)