login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323598
"Word binomial coefficient" for (x|y) where y is the first n symbols of the Thue-Morse sequence (A010060) and x is the first 2n symbols.
2
1, 1, 2, 3, 7, 15, 32, 52, 126, 225, 554, 995, 2446, 5386, 11808, 19869, 49025, 109837, 245854, 425227, 1064505, 2413233, 5466912, 9592348, 24178488, 45073812, 113262740, 208166868, 518091370, 1155428876, 2571714336, 4419410606, 11038230966, 20406919817
OFFSET
0,3
COMMENTS
The "word binomial coefficient" (x|y) is the number of ways that y can be a (scattered) subsequence of x.
LINKS
EXAMPLE
a(4) = 7 because there are 7 ways 0110 can be a subsequence of 01101001.
MAPLE
f:= proc(x, y)
option remember;
local n, m, Res, L, j, t;
n:= nops(x); m:= nops(y);
if n < m then return 0
elif n = m then if x = y then return 1 else return 0 fi
elif m = 0 then return 1 fi;
L:= select(j -> x[j] = y[1], [$1..n-m+1]);
add(procname(x[j+1..-1], y[2..-1]), j=L);
end proc:
TM:= StringTools[Explode](StringTools:-ThueMorse(200)):
seq(f(TM[1..2*n], TM[1..n]), n=0..100); # Robert Israel, Jan 20 2019
MATHEMATICA
f[x_, y_] := f[x, y] = Module[{n, m, L}, n = Length[x]; m = Length[y]; Which[n < m, Return[0], n == m, If[x == y, Return[1], Return [0]], m == 0, Return[1], True, L = Select[Range[n-m+1], x[[#]] == y[[1]]&]; Sum[f[x[[j+1;; -1]], y[[2;; -1]]], {j, L}]]];
TM = ThueMorse[Range[200]];
Join[{1}, Table[f[TM[[1;; 2*n]], TM[[1;; n]]], {n, 0, 100}]] (* Jean-François Alcover, Sep 18 2022, after Robert Israel *)
CROSSREFS
Sequence in context: A153010 A076993 A076698 * A078007 A368410 A358734
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Jan 18 2019
STATUS
approved