OFFSET
1,1
COMMENTS
Primes p such that 2 is a primitive root modulo p (i.e., p is in A001122) and that p == 1 (mod 13).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Artin's constant
Wikipedia, Artin's conjecture on primitive roots
MAPLE
filter:= proc(p) isprime(p) and numtheory:-order(2, p) = p-1 end proc:
select(filter, [seq(i, i = 1 .. 13000, 26)]); # Robert Israel, Dec 20 2023
PROG
(PARI) forprime(p=3, 13000, if(znorder(Mod(2, p))==(p-1) && p%13==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 30 2019
STATUS
approved