login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323416
a(n) = (n-1)! * (10^n - 1) / 9.
1
1, 11, 222, 6666, 266664, 13333320, 799999920, 55999999440, 4479999995520, 403199999959680, 40319999999596800, 4435199999995564800, 532223999999946777600, 69189119999999308108800, 9686476799999990313523200, 1452971519999999854702848000, 232475443199999997675245568000, 39520825343999999960479174656000
OFFSET
1,2
COMMENTS
Take an n-digit number with distinct digits, add all permutations of the digits, divide by the sum of the digits: the result is a(n).
Proof from David A. Corneth, Jan 14 2019: (Start)
Let m be an n-digit number (without leading 0, where n > 0). Then n! permutations of digits can be formed.
So each digit occurs n!/n = (n-1)! times in each position. Therefore the total sum is (10^n - 1) * (n - 1)! * s where s is the sum of digits of n. Dividing this product by s gives a(n) = (10^n - 1) * (n - 1)!. QED (End)
LINKS
FORMULA
Recurrence relation: a(n+1) = n! * 10^n + n * a(n).
Proof: Assume R_n is a string of n 1's (repunit),
a(n) = (n-1)! * R_n so a(n+1) = n! * R_{n+1} = n! * (10^n + R_n);
Thus a(n+1) = n! * 10^n + n! * R_n = n! * 10^n + n * (n-1)! * R_n;
Hence a(n+1) = n! * 10^n + n * a(n).
EXAMPLE
Example for n = 3:
Take the number 569.
Sum the permutations of its digits: 569 + 596 + 659 + 695 + 956 + 965 = 4440.
Add all its digits: 5 + 6 + 9 = 20.
Divide: 4440 / 20 = 222.
General proof for n = 3:
Number: abc where a,b,c are distinct.
The sum of the permutations is 200*(a+b+c) + 20*(a+b+c) + 2*(a+b+c) = 222*(a+b+c), so a(3) = 222.
MATHEMATICA
Table[(n-1)! (10^n-1)/9, {n, 20}] (* Harvey P. Dale, Mar 15 2024 *)
PROG
(Python)
f = lambda n:+(n==0) or n*f(n-1)
def seq(n):
if n==0: return
l = []
for i in range(1, n + 1):
# following line with a string repeat
# s = int('1'*i)
s = 0
for j in range(i):
s += 10 ** j
l += [s*f(i-1)]
return l
(PARI) a(n) = (10^n - 1) / 9 * (n-1)! \\ David A. Corneth, Jan 13 2019
CROSSREFS
Cf. A000142, A002275, A071267. Sum of digits A110728.
Sequence in context: A087402 A048377 A192686 * A308438 A103611 A142541
KEYWORD
nonn,easy,base
AUTHOR
David Cobac, Jan 13 2019
EXTENSIONS
Edited by N. J. A. Sloane, Jan 19 2019
STATUS
approved