login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323312
Continued fraction of 2*K where K is the constant equal to the Kolakoski sequence (A000002) when taken as a continued fraction expansion.
1
2, 1, 5, 6, 2, 2, 5, 1, 3, 2, 3, 1, 5, 2, 3, 1, 2, 1, 5, 6, 6, 2, 2, 5, 1, 3, 2, 5, 1, 2, 1, 3, 2, 3, 1, 5, 2, 2, 3, 1, 2, 1, 5, 2, 2, 3, 1, 3, 2, 5, 1, 2, 1, 3, 2, 2, 5, 1, 3, 2, 5, 1, 2, 1, 5, 6, 5, 1, 2, 1, 3, 2, 5, 1, 2, 1, 5, 6, 6, 2, 2, 3, 1, 3, 2, 2, 6, 6, 5, 1, 2, 1, 5, 6, 2, 2, 6, 5, 1, 2, 1, 5, 2, 3, 1, 3, 2, 2, 5, 1, 3, 2, 5, 1, 2, 1, 3, 2, 3, 1, 5, 2, 3, 1, 2, 1, 5, 6, 6, 2, 2, 6, 5, 1, 2, 1, 5, 6, 2, 2, 5, 1, 3, 2, 3, 1, 2, 1, 5, 6, 5, 1, 2, 1, 5, 2, 3, 1, 2, 1, 5, 6, 5, 1, 2, 1, 3, 2, 3, 1, 5, 2, 2, 6, 6, 2, 2, 3, 1, 3, 2, 5, 1, 2, 1, 5, 6, 2, 2, 6, 6, 5, 1, 2, 1, 5, 2, 3, 1, 5, 2, 2, 3, 1, 2, 1, 5, 2, 2, 3
OFFSET
0,1
COMMENTS
No '4' appears to be present (checked up to 20000 terms); all terms appear to consist of only numbers [1,2,3,5,6]; the continued fraction of K/2 appears to have this same property.
LINKS
EXAMPLE
Let K be the constant having a continued fraction expansion equal to the Kolakoski sequence (A000002):
K = [1; 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, ...];
K = 1.41877964149605852815364808632291708019167486692804029547087633369284...
then this sequence equals the continued fraction expansion of 2*K, where
2*K = 2.83755928299211705630729617264583416038334973385608059094175266738568...
2*K = [2; 1, 5, 6, 2, 2, 5, 1, 3, 2, 3, 1, 5, 2, 3, 1, 2, 1, 5, 6, 6, ...].
The initial 1000 terms of the continued fraction of 2*K (this sequence) starts as:
K = [2;1,5,6,2,2,5,1,3,2,3,1,5,2,3,1,2,1,5,6,6,2,2,5,1,3,
2,5,1,2,1,3,2,3,1,5,2,2,3,1,2,1,5,2,2,3,1,3,2,5,1,
2,1,3,2,2,5,1,3,2,5,1,2,1,5,6,5,1,2,1,3,2,5,1,2,1,
5,6,6,2,2,3,1,3,2,2,6,6,5,1,2,1,5,6,2,2,6,5,1,2,1,
5,2,3,1,3,2,2,5,1,3,2,5,1,2,1,3,2,3,1,5,2,3,1,2,1,
5,6,6,2,2,6,5,1,2,1,5,6,2,2,5,1,3,2,3,1,2,1,5,6,5,
1,2,1,5,2,3,1,2,1,5,6,5,1,2,1,3,2,3,1,5,2,2,6,6,2,
2,3,1,3,2,5,1,2,1,5,6,2,2,6,6,5,1,2,1,5,2,3,1,5,2,
2,3,1,2,1,5,2,2,3,1,3,2,2,6,6,2,2,5,1,3,2,5,1,2,1,
3,2,2,5,1,3,2,3,1,2,1,5,2,2,3,1,2,1,5,2,3,1,5,2,2,
6,6,2,2,3,1,3,2,2,5,1,2,1,3,2,3,1,5,2,3,1,2,1,5,2,
2,3,1,3,2,2,6,6,5,1,2,1,5,2,3,1,2,1,5,6,5,1,2,1,5,
2,3,1,5,2,2,3,1,2,1,5,2,2,3,1,3,2,2,6,6,2,2,3,1,3,
2,5,1,2,1,5,6,5,1,2,1,3,2,3,1,5,2,2,6,5,1,2,1,5,6,
2,2,6,6,5,1,2,1,5,6,2,2,5,1,3,2,3,1,2,1,5,6,5,1,2,
1,5,2,3,1,3,2,2,6,6,2,2,3,1,3,2,2,5,1,2,1,3,2,5,1,
3,2,3,1,2,1,5,2,2,3,1,3,2,2,6,6,2,2,3,1,3,2,5,1,2,
1,3,2,2,5,1,3,2,3,1,2,1,5,2,2,3,1,2,1,5,2,3,1,5,2,
2,3,1,3,2,5,1,3,2,3,1,5,2,3,1,3,2,2,5,1,3,2,5,1,2,
1,3,2,2,5,1,2,1,3,2,3,1,5,2,3,1,2,1,5,2,2,3,1,3,2,
2,6,6,2,2,3,1,3,2,5,1,2,1,3,2,2,5,1,3,2,3,1,2,1,5,
6,5,1,2,1,3,2,3,1,5,2,2,6,6,2,2,3,1,3,2,2,6,6,5,1,
2,1,5,6,2,2,6,6,5,1,2,1,3,2,5,1,3,2,3,1,5,2,2,6,6,
2,2,3,1,3,2,5,1,2,1,5,6,2,2,6,5,1,2,1,5,6,6,2,2,5,
1,3,2,5,1,2,1,3,2,3,1,5,2,2,3,1,2,1,5,2,3,1,5,2,2,
6,6,5,1,2,1,3,2,5,1,2,1,5,6,6,2,2,3,1,3,2,2,6,6,2,
2,5,1,3,2,3,1,5,2,3,1,3,2,2,5,1,2,1,3,2,2,5,1,3,2,
5,1,2,1,3,2,3,1,5,2,3,1,2,1,5,6,6,2,2,6,5,1,2,1,5,
6,2,2,5,1,3,2,3,1,2,1,5,6,5,1,2,1,5,2,3,1,2,1,5,6,
6,2,2,5,1,3,2,3,1,5,2,3,1,2,1,5,6,6,2,2,5,1,3,2,5,
1,2,1,3,2,3,1,5,2,2,6,5,1,2,1,5,6,2,2,6,6,5,1,2,1,
3,2,5,1,3,2,3,1,2,1,5,2,3,1,5,2,2,3,1,3,2,5,1,2,1,
5,6,2,2,6,5,1,2,1,5,2,3,1,2,1,5,6,5,1,2,1,3,2,3,1,
5,2,2,6,6,2,2,3,1,3,2,5,1,2,1,5,6,2,2,6,5,1,2,1,5,
6,6,2,2,5,1,3,2,5,1,2,1,3,2,3,1,5,2,2,3,1,2,1,5,2,
2,3,1,3,2,5,1,3,2,3,1,5,2,3,1,2,1,5,2,2,3,1,3,2,2,
6,6,5,1,2,1,5,2,3,1,2,1,5,6,5,1,2,1,3,2,3,1,5,2,2,
6,5,1,2,1,5,6,6,2,2,6,5,1,2,1,5,2,3,1,3,2,2,5,1,3,
2,5,1,2,1,3,2,3,1,5,2,3,1,2,1,5,6,6,2,2,5,1,3,2,3,
1,5,2,3,1,2,1,5,6,6,2,2,6,5,1,2,1,5,6,6,2,2,3,1,3,...],
and appears to consist of only numbers [1,2,3,5,6].
RELATED DECIMAL EXPANSION.
The initial 2000 digits of K are:
K = 1.41877964149605852815364808632291708019167486692804\
02954708763336928400188878238212125223580007572364\
17384329060435042278529197840919265977519727845772\
31249681924445527538269400939622941753919080178698\
44190565402841816055525264789336579398042313723735\
06894544505381199920260656532991751880179423036191\
18191781837111751310015972004338251420166916352841\
28548680352197737937586124265798291010168421108840\
71451063869739386282136133656443609202913008733448\
93977087426643496537157593270403055671400515606960\
46387972589673179715624069531153417502373099901445\
98694229073228037920174025352357836689935022884073\
14942829632338200243182971813373705320236041498261\
63725329773029816890835459547194290736121908744342\
02769094730583191437000282679742983187641917856239\
76846174791051433173202050007037234224177623710267\
83697233092721964223817503606669847565053676960085\
84525818733680602048418002414012426538439344357445\
36973349936667535562314399578485918626791470385134\
94515743336899131135946482033957425376487598552872\
37760829934688602759224332965535887302494434354329\
32811408552007902955316107872205617178536235011461\
08315328651975928447205378918900565084637355716494\
90086343112113805613214386814550534123779238004029\
55931524769449461832080202964902615444941719421242\
78580324329839092080852796747561030786671649149802\
25424769567200329860354981894175958140269364990733\
04266566455012316146828742985935394226128338546205\
00257307227211886778675098496308262187227193042845\
10938338177836227375234536174120166864707230799053\
64779272859782785249589082220162484921664015461683\
25241205459245414495193037209385728194830173951511\
03624722452966015559723383919980467050521517627260\
56712304062037479581793529463591588648735650492462\
65822702248543856728353909502671843919355228375433\
40300811312516671273697432562541372015964167798713\
87369376123590612846029906514384262681334223394506\
44915472070765873813895052158255705654501784691342\
10410008236248263787632884217448349418396431953078\
94310670012423450694219349566723654314736245884890...
PROG
(PARI) /* Informal code to generate the continued fraction of 2*K */
{A2=[1, 2, 2]; for(n=3, 2200, for(i=1, A2[n], A2=concat(A2, 2-n%2))); #A2}
PQ = contfracpnqn(A2); K = PQ[1, 1]/PQ[2, 1]; CF2=contfrac(K*2); #CF2
for(n=0, #CF2-2, print1( CF2[n+1], ", "); if(n%40==0, print("")))
CROSSREFS
Cf. A000002.
Sequence in context: A113345 A078123 A342968 * A231774 A209170 A231732
KEYWORD
nonn,cofr
AUTHOR
Paul D. Hanna, Jan 17 2019
STATUS
approved