login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323311
E.g.f. A(x) satisfies: 1 = Sum_{n>=0} (exp(n*x) - 1)^n/(A(x) + 1 - exp(n*x))^(n+1).
3
1, 1, 11, 283, 14855, 1310011, 172520351, 31513669363, 7595793146855, 2330879613371851, 886383762411615791, 408963256168949033443, 225040270250903527024055, 145601653678200482159541691, 109437844707983885536850408831, 94572173789825201408460630621523, 93118733370917669491764504635160455, 103644400582305503214140030821130959531, 129490690058782610512772741408027302955471, 180464581077334737195826400036356606725361603
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} (exp(n*x) - 1)^n/(A(x) + 1 - exp(n*x))^(n+1).
(2) 1 = Sum_{n>=0} (exp(n*x) + 1)^n/(A(x) + 1 + exp(n*x))^(n+1).
a(n) ~ c * A317904^n * n^(2*n + 1/2) / exp(2*n), where c = 1.5545244013... - Vaclav Kotesovec, Aug 11 2021
EXAMPLE
E.g.f.: A(x) = 1 + x + 11*x^2/2! + 283*x^3/3! + 14855*x^4/4! + 1310011*x^5/5! + 172520351*x^6/6! + 31513669363*x^7/7! + 7595793146855*x^8/8! + 2330879613371851*x^9/9! + + 886383762411615791*x^10/10! + ...
such that
1 = 1/A(x) + (exp(x) - 1)/(A(x) + 1 - exp(x))^2 + (exp(2*x) - 1)^2/(A(x) + 1 - exp(2*x))^3 + (exp(3*x) - 1)^3/(A(x) + 1 - exp(3*x))^4 + (exp(4*x) - 1)^4/(A(x) + 1 - exp(4*x))^5 + (exp(5*x) - 1)^5/(A(x) + 1 - exp(5*x))^6 + ...
also,
1 = 1/(A(x) + 2) + (exp(x) + 1)/(A(x) + 1 + exp(x))^2 + (exp(2*x) + 1)^2/(A(x) + 1 + exp(2*x))^3 + (exp(3*x) + 1)^3/(A(x) + 1 + exp(3*x))^4 + (exp(4*x) + 1)^4/(A(x) + 1 + exp(4*x))^5 + (exp(5*x) + 1)^5/(A(x) + 1 + exp(5*x))^6 + ...
RELATED SERIES.
log(A(x)) = x + 10*x^2/2! + 252*x^3/3! + 13486*x^4/4! + 1213260*x^5/5! + 162204670*x^6/6! + 29956649772*x^7/7! + 7279075598686*x^8/8! + 2247264600871500*x^9/9! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (exp(m*x +x*O(x^n)) - 1)^m / (Ser(A) + 1 - exp(m*x +x*O(x^n)))^(m+1) ) )[#A]); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A323313.
Sequence in context: A103547 A171195 A274780 * A355428 A280359 A196790
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 02 2019
STATUS
approved