%I #8 Jan 11 2019 20:37:01
%S 0,0,0,0,0,2,0,3,-2,3,0,7,0,14,0,2,0,9,0,15,-5,16,0,18,-6,44,1,19,0,7,
%T 0,25,12,80,-4,10,0,254,-14,18,0,33,0,63,5,224,0,41,-14,16,6,127,0,24,
%U -21,66,-14,746,0,38,0,1360,13,16,8,39,0,211,252,37,0,33,0,3836,7,403,-12,103,0,73,-16,5456,0,22,-74,12248,-350,26,0,8
%N a(n) = A323247(n) - A323243(n).
%H Antti Karttunen, <a href="/A323248/b323248.txt">Table of n, a(n) for n = 1..3445</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A323247(n) - A323243(n).
%F a(n) = A323244(n) - A001222(n).
%F For n > 1, a(n) = A294898(A156552(n)).
%o (PARI)
%o A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
%o A323247(n) = A005187(A156552(n));
%o A323248(n) = (A323247(n) - A323243(n));
%Y Cf. A005187, A156552, A323243, A323246, A323247.
%Y Cf. also A323167.
%K sign
%O 1,6
%A _Antti Karttunen_, Jan 10 2019