Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Jan 06 2019 11:24:55
%S 1,1,1,1,2,1,4,7,4,1,10,22,17,6,1,28,68,64,31,8,1,76,208,230,138,49,
%T 10,1,208,628,796,568,252,71,12,1,568,1880,2680,2208,1170,414,97,14,1,
%U 1552,5584,8832,8232,5052,2140,632,127,16,1,4240,16480,28608,29712,20676,10160,3598,914,161,18,1
%N Coefficients of orthogonal polynomials p(n, x) where p(n, 0) is A026150 with 1 prepended. Triangle read by rows, T(n, k) for 0 <= k <= n.
%F p(n, x) = (x+2)*p(n-1, x) + 2*p(n-2, x) for n >= 3.
%F T(n, k) = [x^k] p(n, x).
%e The first few polynomials are:
%e [0] p(0, x) = 1;
%e [1] p(1, x) = x + 1;
%e [2] p(2, x) = x^2 + 2*x + 1;
%e [3] p(3, x) = x^3 + 4*x^2 + 7*x + 4;
%e [4] p(4, x) = x^4 + 6*x^3 + 17*x^2 + 22*x + 10;
%e [5] p(5, x) = x^5 + 8*x^4 + 31*x^3 + 64*x^2 + 68*x + 28;
%e [6] p(6, x) = x^6 + 10*x^5 + 49*x^4 + 138*x^3 + 230*x^2 + 208*x + 76;
%e The triangle starts:
%e [0] 1;
%e [1] 1, 1;
%e [2] 1, 2, 1;
%e [3] 4, 7, 4, 1;
%e [4] 10, 22, 17, 6, 1;
%e [5] 28, 68, 64, 31, 8, 1;
%e [6] 76, 208, 230, 138, 49, 10, 1;
%e [7] 208, 628, 796, 568, 252, 71, 12, 1;
%e [8] 568, 1880, 2680, 2208, 1170, 414, 97, 14, 1;
%e [9] 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1;
%p p := proc(n) option remember;
%p `if`(n < 3, [1, x+1, x^2 + 2*x + 1][n+1], (x+2)*p(n-1) + 2*p(n-2));
%p sort(expand(%)) end: seq(print(p(n)), n=0..11); # Computes the polynomials.
%p seq(seq(coeff(p(n), x, k), k=0..n), n=0..10);
%Y Row sums are A322940, alternating row sums are A000007.
%Y Cf. A026150, A322942.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Jan 06 2019