login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322842
Primes p such that both p+2 and p-2 are neither prime nor semiprime.
1
173, 277, 457, 607, 727, 929, 1087, 1129, 1181, 1223, 1237, 1307, 1423, 1433, 1447, 1493, 1523, 1549, 1597, 1613, 1627, 1811, 1861, 1973, 2011, 2063, 2137, 2297, 2347, 2377, 2399, 2423, 2677, 2693, 2753, 2767, 2797, 2819, 2851, 2917, 3023, 3313, 3323, 3449
OFFSET
1,1
COMMENTS
Also: Primes p such that both p+2 and p-2 have at least three prime divisors. - David A. Corneth, Dec 28 2018
LINKS
MAPLE
q:= n-> numtheory[bigomega](n)>2:
a:= proc(n) option remember; local p;
p:= `if`(n=1, 1, a(n-1));
do p:= nextprime(p);
if q(p-2) and q(p+2) then break fi
od; p
end:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 28 2018
MATHEMATICA
Select[Prime[Range[1000]], PrimeOmega[#-2] > 2 && PrimeOmega[#+2] > 2&] (* Jean-François Alcover, Nov 26 2020 *)
PROG
(Java)
boolean isIsolatedPrime(int num){
int upper = num + 2;
int lower = num - 2;
return isPrime(num) &&
!isPrime(upper) &&
!isPrime(lower) &&
!isSemiPrime(upper) &&
!isSemiPrime(lower);
}
(PARI) is(n) = isprime(n) && bigomega(n + 2) > 2 && bigomega(n - 2) > 2 \\ David A. Corneth, Dec 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Kyle Buscaglia, Cory Baker, Dec 28 2018
STATUS
approved