login
A322588
Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A291750(n) for any other number.
10
1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 21, 3, 32, 33, 34, 21, 35, 3, 36, 21, 37, 38, 39, 3, 40, 3, 29, 41, 42, 43, 44, 3, 45, 29, 44, 3, 46, 3, 47, 48, 49, 29, 50, 3, 51, 52, 53, 3, 54, 55, 56, 57, 58, 3, 59, 60, 40, 61, 44, 57, 62, 3, 63, 64, 65, 3, 66, 3
OFFSET
1,2
COMMENTS
For all i, j: a(i) = a(j) => A322318(i) = A322318(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
Aux322588(n) = if((n>2)&&isprime(n), 0, (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
v322588 = rgs_transform(vector(up_to, n, Aux322588(n)));
A322588(n) = v322588[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 18 2018
STATUS
approved