login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers k such that A270710(k) (= (k+1)*(3*k-1)) have only 1 or 2 different digits in base 10.
3

%I #44 Sep 08 2022 08:46:23

%S 1,2,3,4,5,6,12,16,17,33,34,48,54,285,333,334,365,385,430,471,516,816,

%T 1049,3333,3334,33333,33334,333333,333334,483048,3333333,3333334,

%U 33333333,33333334,333333333,333333334,3333333333,3333333334,33333333333,33333333334

%N Positive integers k such that A270710(k) (= (k+1)*(3*k-1)) have only 1 or 2 different digits in base 10.

%H Giovanni Resta, <a href="/A322570/b322570.txt">Table of n, a(n) for n = 1..50</a>

%F For k > 0, A002277(k) is a term.

%F For k >= 0, A002277(k) + 1 (= A093137(k)) is a term.

%t Select[Range@ 50000, Length@ Union@ IntegerDigits[3 #^2 + 2 # - 1] <= 2 &] (* _Giovanni Resta_, Sep 04 2019 *)

%o (PARI) for(k=1, 1e8, if(#Set(digits(3*k^2+2*k-1))<=2, print1(k", ")))

%o (Magma) [k:k in [1..10000000]| #Set(Intseq((k+1)*(3*k-1))) le 2]; // _Marius A. Burtea_, Aug 29 2019

%Y Cf. A002277, A016069, A093137, A213517 (in case of triangular numbers), A270710, A322571.

%K nonn,base

%O 1,2

%A _Seiichi Manyama_, Aug 29 2019

%E a(35)-a(36) from _Jinyuan Wang_, Aug 30 2019

%E a(37)-a(40) from _Giovanni Resta_, Sep 04 2019