login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322462
Numbers on the 0-1-12 line in a spiral on a grid of equilateral triangles.
1
0, 1, 12, 13, 36, 37, 72, 73, 120, 121, 180, 181, 252, 253, 336, 337, 432, 433, 540, 541, 660, 661, 792, 793, 936, 937, 1092, 1093, 1260, 1261, 1440, 1441, 1632, 1633, 1836, 1837, 2052, 2053, 2280, 2281, 2520, 2521, 2772, 2773, 3036, 3037, 3312, 3313, 3600
OFFSET
0,3
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 1, 12, ... in the triangle spiral.
FORMULA
a(n) = (3/2)*n*(n+2) = A049598(n/2) if n even, a(n) = a(n-1)+1 if n odd.
G.f.: -x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3). - Alois P. Heinz, Dec 09 2018
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. - Colin Barker, Dec 09 2018
EXAMPLE
a(0) = 0
a(1) = a(1 - 1) + 1 = 0 + 1
a(2) = (3/2) * 2 * (2 + 2) = 3 * 4 = 12
a(3) = a(3 - 1) + 1 = 12 + 1 = 13
a(4) = (3/2) * 4*(4 + 2) = 3 * 2 * 6 = 6 * 6 = 36
a(5) = a(4) + 1 = 36 + 1 = 37.
MAPLE
seq(coeff(series(-x*(x^3-x^2+11*x+1)/((x+1)^2*(x-1)^3), x, n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Dec 19 2018
MATHEMATICA
a[0] = 0; a[n_] := a[n] = If[OddQ[n], a[n - 1] + 1, 3/2*n*(n + 2)]; Array[a, 50, 0] (* Amiram Eldar, Dec 09 2018 *)
PROG
(PARI) concat(0, Vec(x*(1 + 11*x - x^2 + x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Dec 09 2018
CROSSREFS
Cf. A049598.
Sequence in context: A106323 A177796 A342942 * A037304 A041298 A041689
KEYWORD
nonn,easy
AUTHOR
Hans G. Oberlack, Dec 09 2018
EXTENSIONS
Examples added by Hans G. Oberlack, Dec 20 2018
STATUS
approved