login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322459
Sum of n-th powers of the roots of x^3 + 7*x^2 + 14*x + 7.
2
3, -7, 21, -70, 245, -882, 3234, -12005, 44933, -169099, 638666, -2417807, 9167018, -34790490, 132119827, -501941055, 1907443237, -7249766678, 27557748813, -104759610858, 398257159370, -1514069805269, 5756205681709, -21884262613787, 83201447389466, -316323894905207
OFFSET
0,1
COMMENTS
Let A = sin(2*Pi/7), B = sin(4*Pi/7), C = sin(8*Pi/7).
In general, for integer h, k let
X = sqrt(7)*A^(h+k-1)/(2*B^h*C^k),
Y = sqrt(7)*B^(h+k-1)/(2*C^h*A^k),
Z = sqrt(7)*C^(h+k-1)/(2*A^h*B^k),
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n , n = 0, 1, 2, ... is an integer sequence.
This sequence has (h,k) = (1,1).
FORMULA
a(n) = (sqrt(7))^n*( (A/(2*B*C))^n + (B/(2*C*A))^n + (C/(2*A*B))^n ).
a(n) = -7*a(n-1) - 14*a(n-2) - 7*a(n-3) for n>2.
G.f.: (3 + 14*x + 14*x^2) / (1 + 7*x + 14*x^2 + 7*x^3). - Colin Barker, Dec 09 2018
MATHEMATICA
LinearRecurrence[{-7, -14, -7}, {3, -7, 21}, 50] (* Amiram Eldar, Dec 09 2018 *)
CoefficientList[Series[(3+14*x+14*x^2)/(1+7*x+14*x^2+7*x^3), {x, 0, 25}], x] (* G. C. Greubel, Dec 16 2018 *)
PROG
(PARI) Vec((3 + 14*x + 14*x^2) / (1 + 7*x + 14*x^2 + 7*x^3) + O(x^40)) \\ Colin Barker, Dec 09 2018
(PARI) polsym(x^3 + 7*x^2 + 14*x + 7, 25) \\ Joerg Arndt, Dec 17 2018
CROSSREFS
Similar sequences with (h,k) values: A275831 (0,0), A215575 (0,2).
Sequence in context: A240506 A037127 A105795 * A244174 A372649 A148678
KEYWORD
sign,easy
AUTHOR
Kai Wang, Dec 09 2018
STATUS
approved