login
A322310
a(n) = Product_{d|n, d+1 is prime} A008578(1+[Sum_{i=0..A286561(n,1+d)} A320000((n/d)/((1+d)^i), 1+d)]). Here A286561(n,k) gives the k-valuation of n (for k > 1).
5
3, 6, 1, 10, 1, 12, 1, 14, 1, 4, 1, 28, 1, 1, 1, 22, 1, 12, 1, 20, 1, 4, 1, 102, 1, 1, 1, 4, 1, 4, 1, 26, 1, 1, 1, 66, 1, 1, 1, 104, 1, 12, 1, 6, 1, 4, 1, 92, 1, 1, 1, 4, 1, 4, 1, 6, 1, 4, 1, 132, 1, 1, 1, 34, 1, 4, 1, 1, 1, 4, 1, 1240, 1, 1, 1, 1, 1, 4, 1, 57, 1, 4, 1, 21, 1, 1, 1, 28, 1, 1, 1, 6, 1, 1, 1, 492, 1, 1, 1, 12, 1, 4, 1, 6, 1
OFFSET
1,1
LINKS
FORMULA
a(n) = Product_{d|n} A008578(1+[Sum_{i=0..A286561(n,1+d)} A320000((n/d)/((1+d)^i), 1+d)])^A010051(1+d).
For all n, A056239(a(n)) = A014197(n).
PROG
(PARI)
A320000sq(n, k) = if(1==n, if(1==k, 2, 1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ From A320000
A322310(n) = if(1==n, 3, my(m=1); fordiv(n, d, my(s, p=d+1, q=n/d); if(isprime(p) && (s = sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))), m *= prime(s))); (m));
CROSSREFS
Cf. A014197, A320000, A322311 (rgs-transform).
Cf. also A322312.
Sequence in context: A108813 A108591 A110119 * A359279 A152202 A210039
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 03 2018
STATUS
approved