OFFSET
1,2
COMMENTS
Rotkiewicz proved that if k is in this sequence, and m = 24k^2 + 4k + 73, then m*(6m - 5) is a tetradecagonal Fermat pseudoprime to base 2 (A322123), and thus under Schinzel's Hypothesis H there are infinitely many tetradecagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 60701, 832127489, 1381243709, 2166133001, 5885873641, 10876592689, 11945978741, ...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
Wikipedia, Schinzel's Hypothesis H.
MATHEMATICA
Select[Range[1000], PrimeQ[24#^2 + 4# + 73] && PrimeQ[144#^2 + 24# + 433] &]
PROG
(PARI) isok(n) = isprime(m=24n^2+4n+73) && isprime(6*m-5); \\ Michel Marcus, Nov 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 27 2018
STATUS
approved