login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column k=3 of triangle A257673.
3

%I #10 Jan 30 2021 22:50:10

%S 1,9,45,174,576,1719,4761,12441,31050,74593,173547,392787,867876,

%T 1877322,3984636,8314434,17082510,34604523,69194309,136709688,

%U 267111510,516515227,989147760,1877103486,3531796959,6591644601,12208734552,22449066710,40995144288

%N Column k=3 of triangle A257673.

%H Alois P. Heinz, <a href="/A321948/b321948.txt">Table of n, a(n) for n = 3..5000</a>

%F G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^3. - _Ilya Gutkovskiy_, Jan 30 2021

%p b:= proc(n, k) option remember; `if`(n=0, 1, k*add(

%p b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)

%p end:

%p a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(3):

%p seq(a(n), n=3..35);

%Y Column k=3 of A257673.

%K nonn

%O 3,2

%A _Alois P. Heinz_, Nov 22 2018