login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums and column sums.
8

%I #14 Aug 29 2023 15:35:28

%S 1,1,5,19,107,573,4050,29093,249301,2271020,23378901,257871081,

%T 3132494380,40693204728,572089068459,8566311524788,137165829681775,

%U 2327192535461323,41865158805428687,793982154675640340,15863206077534914434,332606431999260837036,7309310804287502958322,167896287022455809865568

%N Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums and column sums.

%H Ludovic Schwob, <a href="/A321652/b321652.txt">Table of n, a(n) for n = 0..39</a>

%F Sum of coefficients in the expansions of all homogeneous symmetric functions in terms of monomial symmetric functions. In other words, if Sum_{|y| = n} h(y) = Sum_{|y| = n} c_y * m(y), then a(n) = Sum_{|y| = n} c_y.

%e The a(3) = 19 matrices:

%e [3] [2 1] [1 1 1]

%e .

%e [2] [2 0] [1 1] [1 1 0] [1 0 1] [0 1 1]

%e [1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0 0]

%e .

%e [1] [1 0] [1 0] [1 0 0] [1 0 0] [0 1] [0 1 0] [0 1 0] [0 0 1] [0 0 1]

%e [1] [1 0] [0 1] [0 1 0] [0 0 1] [1 0] [1 0 0] [0 0 1] [1 0 0] [0 1 0]

%e [1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]

%t prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];

%t multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];

%t Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]]]&]],{n,6}]

%Y Cf. A000219, A001970, A007716, A068313, A114736, A120733, A319646, A321645, A321653, A321654, A321655.

%K nonn

%O 0,3

%A _Gus Wiseman_, Nov 15 2018

%E a(10) onwards from _Ludovic Schwob_, Aug 29 2023