|
|
A321652
|
|
Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums and column sums.
|
|
6
|
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Sum of coefficients in the expansions of all homogeneous symmetric functions in terms of monomial symmetric functions. In other words, if Sum_{|y| = n} h(y) = Sum_{|y| = n} c_y * m(y), then a(n) = Sum_{|y| = n} c_y.
|
|
EXAMPLE
|
The a(3) = 19 matrices:
[3] [2 1] [1 1 1]
.
[2] [2 0] [1 1] [1 1 0] [1 0 1] [0 1 1]
[1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0 0]
.
[1] [1 0] [1 0] [1 0 0] [1 0 0] [0 1] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1] [1 0] [0 1] [0 1 0] [0 0 1] [1 0] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
|
|
MATHEMATICA
|
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], OrderedQ[Total/@prs2mat[#]], OrderedQ[Total/@Transpose[prs2mat[#]]]]&]], {n, 6}]
|
|
CROSSREFS
|
Cf. A000219, A001970, A007716, A068313, A114736, A120733, A319646, A321645, A321653, A321654, A321655.
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|