Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 25 2020 13:00:49
%S 1,2,5,68,1521,45328,1660032,71548008,3533826841,196432984748,
%T 12128132342482,823366216285428,60966207548525287,4890600994792550264,
%U 422601696583826709492,39142599000082019249968,3869325702147169825040193,406650337650126697706078146,45281361448272561712508294157,5325916931170845646048163850556,659842223101960470758187538118437
%N G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
%H Paul D. Hanna, <a href="/A321602/b321602.txt">Table of n, a(n) for n = 0..200</a>
%F G.f. A(x) satisfies:
%F (1) 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
%F (2) 1 = Sum_{n>=0} (1+x)^(2*n^2) / (1 + (1+x)^(2*n)*A(x))^(n+1).
%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 68*x^3 + 1521*x^4 + 45328*x^5 + 1660032*x^6 + 71548008*x^7 + 3533826841*x^8 + 196432984748*x^9 + 12128132342482*x^10 + ...
%e such that
%e 1 = 1 + ((1+x)^2 - A(x)) + ((1+x)^4 - A(x))^2 + ((1+x)^6 - A(x))^3 + ((1+x)^8 - A(x))^4 + ((1+x)^10 - A(x))^5 + ((1+x)^12 - A(x))^6 + ((1+x)^14 - A(x))^7 + ...
%e Also,
%e 1 = 1/(1 + A(x)) + (1+x)^2/(1 + (1+x)^2*A(x))^2 + (1+x)^8/(1 + (1+x)^4*A(x))^3 + (1+x)^18/(1 + (1+x)^6*A(x))^4 + (1+x)^32/(1 + (1+x)^8*A(x))^5 + (1+x)^50/(1 + (1+x)^10*A(x))^6 + ...
%e RELATED SERIES.
%e The logarithmic derivative of the g.f. begins
%e A'(x)/A(x) = 2 + 6*x + 182*x^2 + 5554*x^3 + 211172*x^4 + 9397920*x^5 + 476737830*x^6 + 27086036234*x^7 + 1702330030676*x^8 + ...
%e the coefficients of which are all even:
%e (1/2) * A'(x)/A(x) = 1 + 3*x + 91*x^2 + 2777*x^3 + 105586*x^4 + 4698960*x^5 + 238368915*x^6 + 13543018117*x^7 + 851165015338*x^8 + ...
%o (PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(2*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A303056, A321603, A321604, A321605.
%Y Cf. A326262.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Nov 14 2018