login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321584
Number of connected (0,1)-matrices with n ones and no zero rows or columns.
2
1, 1, 2, 6, 27, 159, 1154, 9968, 99861, 1138234, 14544650, 205927012, 3199714508, 54131864317, 990455375968, 19488387266842, 410328328297512, 9205128127109576, 219191041679766542, 5521387415218119528, 146689867860276432637, 4099255234885039058842, 120199458455807733040338
OFFSET
0,3
COMMENTS
A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.
LINKS
EXAMPLE
The a(4) = 27 matrices:
[1111]
.
[111][111][111][11][110][110][101][101][100][011][011][010][001]
[100][010][001][11][101][011][110][011][111][110][101][111][111]
.
[11][11][11][11][10][10][10][10][01][01][01][01]
[10][10][01][01][11][11][10][01][11][11][10][01]
[10][01][10][01][10][01][11][11][10][01][11][11]
.
[1]
[1]
[1]
[1]
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Length[csm[Map[Last, GatherBy[#, First], {2}]]]==1]&]], {n, 6}] (* Mathematica 7.0+ *)
PROG
(PARI)
NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n, k)*C[k])))}
ConnectedMats(M)={my([m, n]=matsize(M), R=matrix(m, n)); for(m=1, m, for(n=1, n, R[m, n] = M[m, n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1, i-1)*binomial(n, j)*R[i, j]*M[m-i, n-j])))); R}
seq(n)={my(M=matrix(n, n, i, j, sum(k=1, n, binomial(i*j, k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~)) ))))} \\ Andrew Howroyd, Jan 17 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 13 2018
EXTENSIONS
a(7) onwards from Andrew Howroyd, Jan 17 2024
STATUS
approved