login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321537
Write n in base 10, shorten all the runs of successive identical digits by 1.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 0
OFFSET
0,23
COMMENTS
More than the usual number of terms are shown in order to reach some interesting terms.
All primes vanish except those in A050758.
EXAMPLE
22 -> 2, so a(22)=2 is the first term > 1.
10 in not reached until a(1100) = 10.
MAPLE
read("transforms"):
A321537 := proc(n)
local dgsin, dgsout, pos ;
dgsin := convert(n, base, 10) ;
dgsout := [] ;
for pos from 2 to nops(dgsin) do
if op(pos, dgsin) = op(pos-1, dgsin) then
dgsout := [op(pos, dgsin), op(dgsout)] ;
end if;
end do:
digcatL(dgsout) ;
end proc: # R. J. Mathar, Nov 14 2018
MATHEMATICA
Array[FromDigits[Join @@ Map[Most, Split@ IntegerDigits@ #]] &, 123] (* Michael De Vlieger, Nov 13 2018 *)
PROG
(Python)
from re import split
def A321537(n):
return int('0'+''.join(d[:-1] for d in split('(0+)|(1+)|(2+)|(3+)|(4+)|(5+)|(6+)|(7+)|(8+)|(9+)', str(n)) if d != '' and d != None)) # Chai Wah Wu, Nov 13 2018
(PARI) a(n)={my(v=digits(n)); my(L=List()); for(i=1, #v, my(t=v[i]); if(i>1 && t==v[i-1], listput(L, t))); fromdigits(Vec(L))} \\ Andrew Howroyd, Nov 13 2018
CROSSREFS
A base-10 analog of A318921.
Sequence in context: A028706 A060175 A358480 * A218876 A028621 A226557
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2018
STATUS
approved