login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321362 a(n) is the least k such that in the prime power factorization of k! the exponents of primes p_1, ..., p_n are odd, while the exponent of p_(n+1) is even. 1
2, 3, 5, 119, 57, 220, 1131, 2986, 1505, 3211, 21300, 26795, 11820, 14575, 67385, 221051, 33782, 132512, 819236, 1478432, 1630903, 26736550, 1095752, 41815849, 24813938, 31982450, 142574286, 860986855, 602660826, 2638930495, 2664421881, 1309662955, 33767540563 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Analog to A240537 where odd and even are swapped.

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..37 (terms < 10^12)

Rémy Sigrist, C program for A321362

EXAMPLE

For k=2, 2!=2 with factorization 2 where the first exponent is odd.

For k=3, 3!=6 with factorization 2*3 where the first 2 exponents are odd.

For k=5, 5!=120 with factorization 2*3*5 where the first 3 exponents are odd.

In each case, there are no lesser numbers with the same property.

MATHEMATICA

aQ[k_, n_] := Module[{e=FactorInteger[k!][[;; , 2]]}, Length[e]>=n && AllTrue[ e[[1;; n]], OddQ ] && If[Length[e]>n, EvenQ[e[[n+1]]], True]]; a[n_] := Module[ {k=2}, While[!aQ[k, n], k++]; k ]; Array[a, 10] (* Amiram Eldar, Nov 07 2018 *)

PROG

(PARI) isok(v, n) = {if (#v < n, return (0)); for (i=1, n, if (!(v[i] % 2), return(0)); ); (#v == n) || !(v[n+1] % 2); }

newv(v, i) = {if (isprime(i), return(concat(v, 1))); f = factor(i); for (k=1, #f~, v[primepi(f[k, 1])] += f[k, 2]; ); return (v); }

a(n) = {my(v =[1], i = 2); while (!isok(v, n), i++; v = newv(v, i)); i; }

(C) See Links section.

CROSSREFS

Cf. A115627, A240537.

Sequence in context: A205668 A118505 A067799 * A230372 A234900 A117702

Adjacent sequences:  A321359 A321360 A321361 * A321363 A321364 A321365

KEYWORD

nonn

AUTHOR

Michel Marcus, Nov 07 2018

EXTENSIONS

a(16)-a(32) from Rémy Sigrist, Nov 08 2018

a(33) from Giovanni Resta, Nov 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 06:12 EST 2022. Contains 350378 sequences. (Running on oeis4.)