login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234900 Primes p with P(p+1) also prime, where P(.) is the partition function (A000041). 1
2, 3, 5, 131, 167, 211, 439, 2731, 3167, 3541, 4261, 7457, 8447, 18289, 22669, 23201, 23557, 35401, 44507, 76781, 88721, 108131, 126097, 127079, 136319, 141359, 144139, 159169, 164089, 177487, 202627, 261757, 271181, 282911, 291971, 307067, 320561, 389219, 481589, 482627, 602867, 624259, 662107, 682361, 818887, 907657, 914189, 964267, 1040191, 1061689 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It seems that this sequence contains infinitely many terms.

See also A234569 for a similar sequence.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..60

EXAMPLE

a(1) = 2 since P(2+1) = 3 is prime.

a(2) = 3 since P(3+1) = 5 is prime.

a(3) = 5 since P(5+1) = 11 is prime.

MATHEMATICA

p[k_]:=p[k]=PrimeQ[PartitionsP[Prime[k]+1]]

n=0; Do[If[p[k], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 10000}]

CROSSREFS

Cf. A000040, A000041, A049575, A233346, A234470, A234514, A234530, A234567, A234569, A234615, A234644.

Sequence in context: A067799 A321362 A230372 * A117702 A041343 A229349

Adjacent sequences:  A234897 A234898 A234899 * A234901 A234902 A234903

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Jan 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 16:30 EST 2022. Contains 350608 sequences. (Running on oeis4.)