The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321234 Denominator of series expansion of the hypergeometric series 3F2([1/2, 1, 1], [3/2, 3/2], x). 0
 1, 9, 75, 245, 2835, 7623, 39039, 96525, 1859715, 4387955, 20369349, 46646691, 422524375, 947754675, 4217257575, 9316746045, 327288272355, 714666904875, 3105965056425, 6720018279975, 57930003736605, 124404851229945, 532600050191625, 1136728029829275, 19356624110780775 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = numerator(binomial(2*n, n)/4^n) * (2*n+1)^2. - G. C. Greubel, Dec 07 2018 MAPLE a:=n->(2*n+1)^2*binomial(2*n, n)/4^n: seq(numer(a(n)), n=0..25); # Muniru A Asiru, Dec 08 2018 MATHEMATICA Denominator[CoefficientList[Series[HypergeometricPFQ[{1/2, 1, 1}, {3/2, 3/2}, c], {c, 0, 20}], c]] Table[(2*n+1)^2*Numerator[Binomial[2*n, n]/4^n], {n, 0, 30}] (* G. C. Greubel, Dec 07 2018 *) PROG (PARI) vector(30, n, n--; numerator(binomial(2*n, n)/4^n)*(2*n+1)^2) \\ G. C. Greubel, Dec 07 2018 (MAGMA) [Numerator(Binomial(2*n, n)/4^n)*(2*n+1)^2: n in [0..30]]; // G. C. Greubel, Dec 07 2018 (Sage) [numerator(binomial(2*n, n)/4^n)*(2*n+1)^2 for n in range(30)] # G. C. Greubel, Dec 07 2018 (GAP) List([0..30], n -> NumeratorRat(Binomial(2*n, n)/4^n)*(2*n+1)^2); # G. C. Greubel, Dec 07 2018 CROSSREFS Numerators appear to be A046161. Sequence in context: A028991 A249396 A102094 * A274311 A281804 A210045 Adjacent sequences:  A321231 A321232 A321233 * A321235 A321236 A321237 KEYWORD nonn,frac AUTHOR Eugene d'Eon, Nov 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 15:16 EDT 2020. Contains 333107 sequences. (Running on oeis4.)