login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321234
Denominator of series expansion of the hypergeometric series 3F2([1/2, 1, 1], [3/2, 3/2], x).
0
1, 9, 75, 245, 2835, 7623, 39039, 96525, 1859715, 4387955, 20369349, 46646691, 422524375, 947754675, 4217257575, 9316746045, 327288272355, 714666904875, 3105965056425, 6720018279975, 57930003736605, 124404851229945, 532600050191625, 1136728029829275, 19356624110780775
OFFSET
0,2
FORMULA
a(n) = numerator(binomial(2*n, n)/4^n) * (2*n+1)^2. - G. C. Greubel, Dec 07 2018
From Peter Bala, Apr 27 2024: (Start)
[x^n] 3F2([1/2, 1, 1], [3/2, 3/2], x) = 1/(2*n + 1) * Integral_{x = 0..1} (1 - x^2)^n dx = 1/(2*n + 1) * Sum_{k = 0..n} (-1)^k * binomial(n, k)/(2*k + 1).
a(n) = denominator of 2^(2*n+1)/ ((n + 1)*(2*n + 1)*binomial(2*n+2, n+1)). (End)
MAPLE
a:=n->(2*n+1)^2*binomial(2*n, n)/4^n: seq(numer(a(n)), n=0..25); # Muniru A Asiru, Dec 08 2018
MATHEMATICA
Denominator[CoefficientList[Series[HypergeometricPFQ[{1/2, 1, 1}, {3/2, 3/2}, c], {c, 0, 20}], c]]
Table[(2*n+1)^2*Numerator[Binomial[2*n, n]/4^n], {n, 0, 30}] (* G. C. Greubel, Dec 07 2018 *)
PROG
(PARI) vector(30, n, n--; numerator(binomial(2*n, n)/4^n)*(2*n+1)^2) \\ G. C. Greubel, Dec 07 2018
(Magma) [Numerator(Binomial(2*n, n)/4^n)*(2*n+1)^2: n in [0..30]]; // G. C. Greubel, Dec 07 2018
(Sage) [numerator(binomial(2*n, n)/4^n)*(2*n+1)^2 for n in range(30)] # G. C. Greubel, Dec 07 2018
(GAP) List([0..30], n -> NumeratorRat(Binomial(2*n, n)/4^n)*(2*n+1)^2); # G. C. Greubel, Dec 07 2018
CROSSREFS
Numerators appear to be A046161.
Sequence in context: A028991 A249396 A102094 * A339483 A274311 A281804
KEYWORD
nonn,frac
AUTHOR
Eugene d'Eon, Nov 01 2018
STATUS
approved