OFFSET
1,1
COMMENTS
This is an integer sequence. For odd primes p, (2 + sqrt(5))^p + (2 - sqrt(5))^p - 2^(p+1) = binomial(p, 2)*2^(p-1)*5 + binomial(p, 4)*2^(p-3)*5^2 + ... + binomial(p, p-1)*2^2*5^((p-1)/2), and p divides binomial(p, k) for 1 <= k <= p - 1.
For n > 1, a(n) is divisible by 20.
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..250
FORMULA
MATHEMATICA
Table[Floor[(2+Sqrt[5])^(Prime[n]) + (2-Sqrt[5])^(Prime[n]) - 2^(Prime[n]+1)]/Prime[n], {n, 1, 10}]
PROG
(PARI) a(n) = my(p=prime(n)); (floor((2*quadgen(5)+1)^p+(-2*quadgen(5)+3)^p+.) - 2^(p+1))/p; \\ Michel Marcus, Nov 04 2018
(PARI) a(n) = my(p=prime(n)); (([1, 1; 1, 0]^(3*p)*[1; 2])[2, 1] - 2^(p+1))/p \\ Jianing Song, Dec 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, Oct 31 2018
STATUS
approved