login
A321012
Trajectory of 596 under repeated application of the map k -> A320486(k^2).
5
596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986, 596, 3216, 103425, 197325
OFFSET
1,1
COMMENTS
k -> A320486(k) is Eric Angelini's remove-repeated-digits map.
Lars Blomberg has discovered that if we start with any positive integer and repeatedly apply the map k -> A320486(k^2) then we will eventually either:
- reach 0,
- reach one of the four fixed points 1, 1465, 4376, 89476 (see A321010)
- reach the period-10 cycle shown in A321011, or
- reach the period-9 cycle shown in A321012.
Since there are only finitely many possible starting values with all digits distinct, it should not be difficult to check that this is true (and indeed, Lars Blomberg may by now have completed the proof).
REFERENCES
Eric Angelini, Postings to Sequence Fans Mailing List, Oct 24 2018 and Oct 26 2018.
FORMULA
From Colin Barker, Nov 04 2018: (Start)
G.f.: x*(596 + 3216*x + 103425*x^2 + 197325*x^3 + 897162*x^4 + 652*x^5 + 2510*x^6 + 631*x^7 + 3986*x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = a(n-9) for n>9.
(End)
EXAMPLE
The cycle of length 9 is (596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986).
MATHEMATICA
PadRight[{}, 80, {596, 3216, 103425, 197325, 897162, 652, 2510, 631, 3986}] (* Harvey P. Dale, Aug 08 2023 *)
PROG
(PARI) Vec(x*(596 + 3216*x + 103425*x^2 + 197325*x^3 + 897162*x^4 + 652*x^5 + 2510*x^6 + 631*x^7 + 3986*x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^40)) \\ Colin Barker, Nov 04 2018
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Nov 04 2018
STATUS
approved