login
A320642
Number of 1's in the base-(-2) expansion of -n.
2
2, 1, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6, 5, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6, 5, 7, 6, 8, 7, 6
OFFSET
1,1
COMMENTS
Number of 1's in A212529(n).
Define f(n) as: f(0) = 0, f(-2*n) = f(n), f(-2*n+1) = f(n) + 1, then a(n) = f(-n), n >= 1. See A027615 for the other half of f.
For k > 1, the earliest occurrence of k is n = A086893(k-1).
LINKS
Eric Weisstein's World of Mathematics, Negabinary.
Eric Weisstein's World of Mathematics, Negadecimal.
Wikipedia, Negative base.
FORMULA
a(n) == -n (mod 3).
a(n) = A000120(A005352(n)). - Michel Marcus, Oct 23 2018
EXAMPLE
A212529(11) = 110101 which has four 1's, so a(11) = 4.
A212529(25) = 111011 which has five 1's, so a(25) = 5.
A212529(51) = 11011101 which has six 1's, so a(51) = 6.
MATHEMATICA
b[n_] := b[n] = b[Quotient[n - 1, -2]] + Mod[n, 2]; b[0] = 0; a[n_] := b[-n]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
PROG
(PARI) b(n) = if(n==0, 0, b(n\(-2))+n%2)
a(n) = b(-n)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jianing Song, Oct 18 2018
STATUS
approved