login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320572
The smallest integer m such that each nonzero digit appears in the decimal representation of the sequence n^1, n^2, ..., n^x, where 1 <= x <= m, or 0 if no such m exists.
1
0, 15, 8, 10, 11, 12, 7, 5, 6, 0, 7, 6, 6, 5, 9, 5, 6, 4, 5, 15, 8, 6, 4, 5, 8, 5, 4, 5, 7, 8, 7, 7, 6, 8, 7, 6, 6, 5, 6, 10, 7, 6, 6, 5, 6, 6, 5, 7, 6, 11, 6, 6, 6, 4, 5, 7, 4, 5, 4, 12, 4, 6, 7, 7, 8, 4, 4, 5, 3, 7, 4, 5, 6, 7, 6, 4, 5, 6, 4, 5, 6, 5, 4, 4, 6, 5, 5, 4, 7, 6, 4, 5, 4, 6, 4, 4, 4, 6
OFFSET
1,2
COMMENTS
7 is the only fixed point less than 10.
FORMULA
a(n) = a(10*n).
a(n) <= A090493(n). - Rémy Sigrist, Oct 16 2018
EXAMPLE
For n=1, a(1) = 0, because all powers are identical to 1, and it is not possible to get any other digits.
For n=3, a(3) = 8 because the following are needed to use all nonzero digits: 3^1 = 3, 3^2 = 9, 3^3 = 27, 3^4 = 81, 3^5 = 243, 3^8 = 6561.
For n=10, a(10) = 0, because one can only get digits 0 and 1.
MATHEMATICA
a[n_] := If[IntegerQ[Log10[n]], 0, Module[{s={0}, m=1}, While[Length[s]<10, s=DeleteDuplicates@Catenate[{s, IntegerDigits[n^m]}]; m++]; m-1]]; Array[a, 100] (* Amiram Eldar, Nov 14 2018 *)
PROG
(Python)
def A320572(n):
n = int(str(n).strip('0'))
if n != 1:
s = set(range(1, 10))
a = 0
m = 1
while s:
a += 1
m *= n
s.difference_update(int(z) for z in str(m))
return a
else:
return 0
(PARI) a(n) = {if (10^valuation(n, 10) == n, return(0)); v = []; kn = n; for (m=1, oo, v = Set(concat(v, digits(n))); v = select(x->(x>0), v); if (#v == 9, return (m)); n *= kn; ); } \\ Michel Marcus, Oct 17 2018
(PARI) a(n) = {if(vecsum(digits(n))==1, return(0)); my(v = vector(9), todo = 9, t = n); for(i=1, oo, d=digits(t); for(j = 1, #d, if(d[j] > 0 && v[d[j]] == 0, todo--; v[d[j]] = 1; if(todo <= 0, return(i)))); t*=n)} \\ David A. Corneth, Oct 17 2018
CROSSREFS
Cf. A090493.
Sequence in context: A103241 A194707 A094501 * A090636 A126892 A195035
KEYWORD
nonn,base
AUTHOR
Benjamin Knight, Oct 15 2018
STATUS
approved