login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = binomial(n - k - 1, k), 0 <= k < n, and T(n,n) = (-1)^n, triangle read by rows.
1

%I #21 Dec 23 2018 23:30:54

%S 1,1,-1,1,0,1,1,1,0,-1,1,2,0,0,1,1,3,1,0,0,-1,1,4,3,0,0,0,1,1,5,6,1,0,

%T 0,0,-1,1,6,10,4,0,0,0,0,1,1,7,15,10,1,0,0,0,0,-1,1,8,21,20,5,0,0,0,0,

%U 0,1,1,9,28,35,15,1,0,0,0,0,0,-1,1,10,36

%N T(n,k) = binomial(n - k - 1, k), 0 <= k < n, and T(n,n) = (-1)^n, triangle read by rows.

%C Differs from A164925 in signs.

%C The n-th row consists of the coefficients in the expansion of (-x)^n + (((1 + sqrt(1 + 4*x))/2)^n -((1 - sqrt(1 + 4*x))/2)^n )/sqrt(1 + 4*x).

%C The coefficients in the expansion of Sum_{j=0..floor((n - 1)/2)} T(n,k)*x^(n - 2*j - 1) yield the n-th row in A168561, the coefficients of the n-th Fibonacci polynomial.

%C Row n sums up to Fibonacci(n) + (-1)^n (A008346).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_polynomials">Fibonacci polynomials</a>

%F G.f.: 1/((1 + x*y)*(1 - y - x*y^2)).

%F E.g.f.: exp(-x*y) + (exp(y*(1 + sqrt(1 + 4*x))/2) - exp(y*(1 - sqrt(1 + 4*x))/2))/sqrt(1 + 4*x).

%F T(n,1) = A023443(n).

%e Triangle begins:

%e 1;

%e 1, -1;

%e 1, 0, 1;

%e 1, 1, 0, -1;

%e 1, 2, 0, 0, 1;

%e 1, 3, 1, 0, 0, -1;

%e 1, 4, 3, 0, 0, 0, 1;

%e 1, 5, 6, 1, 0, 0, 0, -1;

%e 1, 6, 10, 4, 0, 0, 0, 0, 1;

%e 1, 7, 15, 10, 1, 0, 0, 0, 0, -1;

%e 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1;

%e 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1;

%e ...

%t Table[Table[Binomial[n - k - 1, k], {k, 0, n}], {n, 0, 12}]//Flatten

%o (Maxima) create_list(binomial(n - k - 1, k), n, 0, 12, k, 0, n);

%Y Inspired by A123018.

%Y Cf. A007318, A026729, A049310, A052553, A164925, A168561.

%K sign,easy,tabl

%O 0,12

%A _Franck Maminirina Ramaharo_, Oct 14 2018