OFFSET
0,12
COMMENTS
Differs from A164925 in signs.
The n-th row consists of the coefficients in the expansion of (-x)^n + (((1 + sqrt(1 + 4*x))/2)^n -((1 - sqrt(1 + 4*x))/2)^n )/sqrt(1 + 4*x).
The coefficients in the expansion of Sum_{j=0..floor((n - 1)/2)} T(n,k)*x^(n - 2*j - 1) yield the n-th row in A168561, the coefficients of the n-th Fibonacci polynomial.
Row n sums up to Fibonacci(n) + (-1)^n (A008346).
LINKS
FORMULA
G.f.: 1/((1 + x*y)*(1 - y - x*y^2)).
E.g.f.: exp(-x*y) + (exp(y*(1 + sqrt(1 + 4*x))/2) - exp(y*(1 - sqrt(1 + 4*x))/2))/sqrt(1 + 4*x).
T(n,1) = A023443(n).
EXAMPLE
Triangle begins:
1;
1, -1;
1, 0, 1;
1, 1, 0, -1;
1, 2, 0, 0, 1;
1, 3, 1, 0, 0, -1;
1, 4, 3, 0, 0, 0, 1;
1, 5, 6, 1, 0, 0, 0, -1;
1, 6, 10, 4, 0, 0, 0, 0, 1;
1, 7, 15, 10, 1, 0, 0, 0, 0, -1;
1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1;
1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1;
...
MATHEMATICA
Table[Table[Binomial[n - k - 1, k], {k, 0, n}], {n, 0, 12}]//Flatten
PROG
(Maxima) create_list(binomial(n - k - 1, k), n, 0, 12, k, 0, n);
CROSSREFS
KEYWORD
AUTHOR
Franck Maminirina Ramaharo, Oct 14 2018
STATUS
approved