login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is smallest positive integer i such that difference of numerator and denominator of sum of j^(-i), when j=1..n and n > 2, is prime.
1

%I #30 Nov 22 2018 02:46:05

%S 1,1,2,1,1,2,32,1

%N a(n) is smallest positive integer i such that difference of numerator and denominator of sum of j^(-i), when j=1..n and n > 2, is prime.

%C a(11) > 6360.

%C a(11) > 12000. - _Chai Wah Wu_, Nov 15 2018

%C a(19) = a(20) = a(26) = a(30) = a(31) = a(33) = a(40) = 1, a(44) = a(48) = a(49) = 2, a(42) = 3, a(14) = 5, a(24) = a(46) = 7, a(12) = 8, a(13) = 17, a(47) = 19, a(25) = 49, a(38) = 54, a(37) = 179, a(16) = 207, a(22) = 676, a(18) = 690, a(43) = 880, a(17) = 1068, a(34) = 1199. - _Chai Wah Wu_, Nov 20 2018

%C a(15) = 2590, a(23) = 3734. - _Chai Wah Wu_, Nov 21 2018

%t a[n_] := Do[s = HarmonicNumber[n, r]; If[PrimeQ[Numerator[s] - Denominator[s]], Return[r]], {r, 1, Infinity}]; Table[a[n], {n, 3, 10}] (* _Vaclav Kotesovec_, Nov 14 2018 *)

%o (PARI)

%o a(n)={for(i=1, +oo, s=sum(j=1, n, j^(-i)); p=numerator(s); q=denominator(s); if(ispseudoprime(p-q), return(i)))};

%Y Cf. A320077.

%K nonn,more

%O 3,3

%A _Dmitry Ezhov_, Oct 05 2018