login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320076
a(n) is smallest positive integer i such that difference of numerator and denominator of sum of j^(-i), when j=1..n and n > 2, is prime.
1
1, 1, 2, 1, 1, 2, 32, 1
OFFSET
3,3
COMMENTS
a(11) > 6360.
a(11) > 12000. - Chai Wah Wu, Nov 15 2018
a(19) = a(20) = a(26) = a(30) = a(31) = a(33) = a(40) = 1, a(44) = a(48) = a(49) = 2, a(42) = 3, a(14) = 5, a(24) = a(46) = 7, a(12) = 8, a(13) = 17, a(47) = 19, a(25) = 49, a(38) = 54, a(37) = 179, a(16) = 207, a(22) = 676, a(18) = 690, a(43) = 880, a(17) = 1068, a(34) = 1199. - Chai Wah Wu, Nov 20 2018
a(15) = 2590, a(23) = 3734. - Chai Wah Wu, Nov 21 2018
MATHEMATICA
a[n_] := Do[s = HarmonicNumber[n, r]; If[PrimeQ[Numerator[s] - Denominator[s]], Return[r]], {r, 1, Infinity}]; Table[a[n], {n, 3, 10}] (* Vaclav Kotesovec, Nov 14 2018 *)
PROG
(PARI)
a(n)={for(i=1, +oo, s=sum(j=1, n, j^(-i)); p=numerator(s); q=denominator(s); if(ispseudoprime(p-q), return(i)))};
CROSSREFS
Cf. A320077.
Sequence in context: A028306 A111259 A304195 * A138948 A186114 A326934
KEYWORD
nonn,more
AUTHOR
Dmitry Ezhov, Oct 05 2018
STATUS
approved