Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jun 29 2023 09:03:14
%S 1,3,7,3,1,0,6,5,1,8,0,9,0,7,3,5,9,1,8,7,1,5,8,7,4,7,0,6,1,2,4,3,5,0,
%T 1,2,3,1,9,8,5,4,4,7,2,2,1,4,5,1,6,1,5,4,3,9,9,3,9,4,4,4,4,1,5,0,4,5,
%U 6,8,1,9,6,2,8,9,6,0,8,2,7,5,7,5,4,5,6
%N Decimal expansion of the probability that an integer 4-tuple is pairwise unitary coprime.
%C Two numbers are unitary coprime if their largest common unitary divisor is 1.
%D Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 54.
%H László Tóth, <a href="https://doi.org/10.1007/978-1-4939-1106-6_19">Multiplicative arithmetic functions of several variables: a survey</a>, in Themistocles M. Rassias and Panos M. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, NY, 2014, pp. 483-514 (see p. 509), <a href="https://arxiv.org/abs/1310.7053">preprint</a>, arXiv:1310.7053 [math.NT], 2013-2014 (see p. 22).
%F Equals zeta(2)^2 * zeta(3) * zeta(4) * Product_{p prime} (1 - 8/p^2 + 3/p^3 + 27/p^4 - 24/p^5 - 14/p^6 - 3/p^7 + 37/p^8 - 30/p^9 + 42/p^10 - 33/p^11 - 41/p^12 + 78/p^13 - 44/p^14 + 9/p^15).
%e 0.137310651809073591871587470612435012319854472214516...
%t $MaxExtraPrecision = 1000; nm = 1000; f[x_] := 1 - 8*x^2 + 3*x^3 + 27*x^4 - 24*x^5 - 14*x^6 - 3*x^7 + 37*x^8 - 30*x^9 + 42*x^10 - 33*x^11 - 41*x^12 + 78*x^13 - 44*x^14 + 9*x^15; c = LinearRecurrence[{-3, 2, 11, -3, -16, -14, 6, 7, 19, 0, -17, 9}, {0, -16, 9, -20, 0, 161, -588, 2116, -5859, 15104, -34716, 70609}, nm]; RealDigits[Zeta[2]^2*Zeta[3]*Zeta[4]*f[1/2]*f[1/3]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
%o (PARI) zeta(2)^2 * zeta(3) * zeta(4) * prodeulerrat(1-8/p^2+3/p^3+27/p^4-24/p^5-14/p^6-3/p^7+37/p^8-30/p^9+42/p^10-33/p^11-41/p^12+78/p^13-44/p^14+9/p^15) \\ _Amiram Eldar_, Jun 29 2023
%Y Cf. A077610, A306071, A319592.
%K nonn,cons
%O 0,2
%A _Amiram Eldar_, Aug 27 2019