login
A320027
Decimal expansion of the probability that an integer 4-tuple is pairwise unitary coprime.
0
1, 3, 7, 3, 1, 0, 6, 5, 1, 8, 0, 9, 0, 7, 3, 5, 9, 1, 8, 7, 1, 5, 8, 7, 4, 7, 0, 6, 1, 2, 4, 3, 5, 0, 1, 2, 3, 1, 9, 8, 5, 4, 4, 7, 2, 2, 1, 4, 5, 1, 6, 1, 5, 4, 3, 9, 9, 3, 9, 4, 4, 4, 4, 1, 5, 0, 4, 5, 6, 8, 1, 9, 6, 2, 8, 9, 6, 0, 8, 2, 7, 5, 7, 5, 4, 5, 6
OFFSET
0,2
COMMENTS
Two numbers are unitary coprime if their largest common unitary divisor is 1.
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 54.
LINKS
László Tóth, Multiplicative arithmetic functions of several variables: a survey, in Themistocles M. Rassias and Panos M. Pardalos (eds.), Mathematics Without Boundaries, Springer, New York, NY, 2014, pp. 483-514 (see p. 509), preprint, arXiv:1310.7053 [math.NT], 2013-2014 (see p. 22).
FORMULA
Equals zeta(2)^2 * zeta(3) * zeta(4) * Product_{p prime} (1 - 8/p^2 + 3/p^3 + 27/p^4 - 24/p^5 - 14/p^6 - 3/p^7 + 37/p^8 - 30/p^9 + 42/p^10 - 33/p^11 - 41/p^12 + 78/p^13 - 44/p^14 + 9/p^15).
EXAMPLE
0.137310651809073591871587470612435012319854472214516...
MATHEMATICA
$MaxExtraPrecision = 1000; nm = 1000; f[x_] := 1 - 8*x^2 + 3*x^3 + 27*x^4 - 24*x^5 - 14*x^6 - 3*x^7 + 37*x^8 - 30*x^9 + 42*x^10 - 33*x^11 - 41*x^12 + 78*x^13 - 44*x^14 + 9*x^15; c = LinearRecurrence[{-3, 2, 11, -3, -16, -14, 6, 7, 19, 0, -17, 9}, {0, -16, 9, -20, 0, 161, -588, 2116, -5859, 15104, -34716, 70609}, nm]; RealDigits[Zeta[2]^2*Zeta[3]*Zeta[4]*f[1/2]*f[1/3]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k - 1/3^k)/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]
PROG
(PARI) zeta(2)^2 * zeta(3) * zeta(4) * prodeulerrat(1-8/p^2+3/p^3+27/p^4-24/p^5-14/p^6-3/p^7+37/p^8-30/p^9+42/p^10-33/p^11-41/p^12+78/p^13-44/p^14+9/p^15) \\ Amiram Eldar, Jun 29 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Aug 27 2019
STATUS
approved