Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Apr 11 2019 10:08:21
%S 6,19,30,43,50,63,74,87,100,111,124,131,144,155,168,179,192,199,212,
%T 223,236,249,260,273,280,293,304,317,324,337,348,361,374,385,398,405,
%U 418,429,442,453,466,473,486,497,510,523,534,547,554,567,578,591,604,615,628,635,648,659,672,683,696,703,716,727,740,753
%N a(n) = A003145(A003145(n)).
%C By analogy with the Wythoff compound sequences A003622 etc., the nine compounds of A003144, A003145, A003146 might be called the tribonacci compound sequences. They are A278040, A278041, and A319966-A319972.
%C From _Wolfdieter Lang_, Oct 19 2018: (Start)
%C In another version with the tribonacci word TriWord = A080843 (written as a sequence which has offset 0) and the positions of 0, 1 and 2 given by the B = A278039, A = A278040 and C = A278041 numbers, respectively, the present sequence (with offset 0) gives the smaller of the B-number pairs (B(k), B(k+1)) with B(k+1) = B(k) + 1 for some k >= 0 (named tribonacci B0-numbers), ordered increasingly.
%C The B-numbers A278039 come in three disjoint and complementary types, called B0-, B1- and B2-numbers. They are defined by the indices k of pairs of consecutive entries TriWord(k), Triword(k+1) depending on their values 0, 0 or 0, 1 or 0, 2 for the B0- or B1- or B2-numbers, respectively.
%C The B0-numbers are a(n+1) = 2*C(n) - n = A(A(n)) + 1; the B1-numbers are B1(n) = A(n) - 1; and the B2-numbers are B2(n) = C(n) - 1, all for n >= 0.
%C B0(n) + 1 = B1(A(n)+1), B1(n) + 1 = A(n) and B2(n) + 1 = C(n).
%C (End)
%C (a(n)) equals the positions of the word baa in the tribonacci word t = abacabaa..., fixed point of the morphism a->ab, b->ac, c->a. This follows from the fact that the word aa is always preceded in t by the letter b, and the formula BB = AC-1, where A := A003144, B := A003145, C := A003146. - _Michel Dekking_, Apr 09 2019
%H Rémy Sigrist, <a href="/A319968/b319968.txt">Table of n, a(n) for n = 1..10000</a>
%H Elena Barcucci, Luc Belanger and Srecko Brlek, <a href="http://www.fq.math.ca/Papers1/42-4/quartbarcucci04_2004.pdf">On tribonacci sequences</a>, Fib. Q., 42 (2004), 314-320. Compare page 318.
%H L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., <a href="http://www.fq.math.ca/Scanned/10-1/carlitz3-a.pdf">Fibonacci representations of higher order</a>, Fib. Quart., 10 (1972), 43-69, Theorem 13.
%H Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
%F a(n) = A003145(A003145(n)), for n >= 1.
%F a(n) = B0(n-1) = 2*A003146(n) - (n+1) = 2*A278041(n-1) - (n-1) = A278040(A278040(n-1)) + 1, for n >= 1. For B0 see a comment above and the example. - _Wolfdieter Lang_, Oct 19 2018
%F a(n+1) = B(C(n)) = B(C(n) + 1) - 1 = 2*(A(n) + B(n)) + n + 4, for n >= 0, where B = A278039, C = A278041 and A = A278040. For a proof see the W. Lang link in A278040, Proposition 9, eq. (53). - _Wolfdieter Lang_, Dec 13 2018
%F a(n) = 2*(A003144(n) + A003145(n)) + n - 1, n >= 1. [Rewriting a formula of the precedimg entry]. - _Wolfdieter Lang_, Apr 11 2019
%e From _Wolfdieter Lang_, Oct 19 2018: (Start)
%e The TriWord A080843 starts: 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, ... (offset 0)
%e The trisection of the B-numbers A278039 (indices for 0 in TriWord) begins:
%e n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
%e B0: 6 19 30 43 50 63 74 87 100 111 124 131 144 155 168 179 192 ...
%e B1: 0 4 7 11 13 17 20 24 28 31 35 37 41 44 48 51 55 ...
%e B2: 2 9 15 22 26 33 39 46 53 59 66 70 77 83 90 96 103 ...
%e ------------------------------------------------------------------------------------
%e (End)
%Y Cf. A003144, A003145, A003146, A003622, A080843, A278039, A278040, A278041, and A319966-A319972.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Oct 05 2018
%E More terms from _Joerg Arndt_, Oct 15 2018