login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319860 Expansion of Product_{k>0} (1 - 2*k*x^(2*k))/(1 + (2*k-1)*x^(2*k-1)). 1
1, -1, -1, -2, -2, 3, 8, 7, -6, -2, 12, 10, -9, -10, -98, -171, 12, 224, 178, 300, 30, -992, -547, 1612, 1950, -290, -2859, -4532, -878, 13260, 23998, -6100, -51628, -56630, -24790, 65573, 217178, 103912, -278804, -418582, 25319, 698460, 1300830, 252430, -3165500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..44.

FORMULA

Convolution inverse of A319859.

MAPLE

seq(coeff(series(mul((1-2*k*x^(2*k))/(1+(2*k-1)*x^(2*k-1)), k=1..n), x, n+1), x, n), n = 0 .. 45); # Muniru A Asiru, Sep 29 2018

PROG

(PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, (1-(2*k)*x^(2*k))/(1+(2*k-1)*x^(2*k-1))))

CROSSREFS

Cf. A067553, A319859.

Sequence in context: A153935 A153944 A046652 * A300354 A091681 A076541

Adjacent sequences:  A319857 A319858 A319859 * A319861 A319862 A319863

KEYWORD

sign

AUTHOR

Seiichi Manyama, Sep 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 22:30 EDT 2020. Contains 335484 sequences. (Running on oeis4.)