login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of A276150(d) over divisors d of n, where A276150 gives the sum of digits in primorial base.
6

%I #10 Mar 06 2024 01:00:34

%S 1,2,3,4,4,5,3,6,6,8,5,9,4,7,10,10,6,11,5,14,10,11,7,15,9,10,12,15,8,

%T 16,3,12,10,10,10,17,4,9,10,20,6,18,5,17,18,13,7,23,8,18,14,18,8,22,

%U 14,23,14,16,9,26,4,7,17,16,12,20,5,16,14,22,7,27,6,10,21,17,14,22,7,30,19,14,9,34,16,13,18,27,10,30,10,19,10

%N Sum of A276150(d) over divisors d of n, where A276150 gives the sum of digits in primorial base.

%C Inverse Möbius transform of A276150.

%H Antti Karttunen, <a href="/A319715/b319715.txt">Table of n, a(n) for n = 1..30030</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>.

%F a(n) = Sum_{d|n} A276150(d).

%F a(n) = A319713(n) + A276150(n).

%t d[n_] := Module[{k = n, p = 2, s = 0, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, s += r; p = NextPrime[p]]; s]; a[n_] := DivisorSum[n, d[#] &]; Array[a, 100] (* _Amiram Eldar_, Mar 05 2024 *)

%o (PARI)

%o A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };

%o A319715(n) = sumdiv(n,d,A276150(d));

%Y Cf. A276150, A319712, A319713.

%K nonn,base

%O 1,2

%A _Antti Karttunen_, Oct 02 2018