The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319478 a(n) is the least base b > 1 such that the product n * n can be computed without carry by long multiplication. 2
 2, 2, 2, 3, 2, 4, 5, 5, 2, 3, 3, 5, 3, 6, 7, 7, 2, 4, 9, 9, 4, 4, 10, 11, 11, 5, 5, 3, 3, 13, 3, 3, 2, 11, 11, 5, 3, 3, 6, 13, 13, 13, 6, 6, 6, 15, 15, 15, 6, 7, 5, 5, 17, 17, 18, 5, 7, 7, 7, 19, 19, 20, 20, 7, 2, 4, 8, 22, 4, 4, 17, 23, 6, 6, 8, 24, 19, 19, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Apparently, a(n) is also the least base b > 1 where the square of the digital sum of n equals the digital sum of the square of n. The sequence is well defined as, for any n > 0, n * n can be computed without carry in base n^2 + 1. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..10000 Rémy Sigrist, Colored scatterplot of (n, a(n)) for n = 0..50000 (where the color is function of the initial digit of n in base a(n)) FORMULA a(n) = 2 iff n belongs to A131577. a(n * a(n)) <= a(n). a(A061909(n)) <= 10 for any n > 0. MATHEMATICA Array[Block[{b = 2}, While[AnyTrue[With[{d = IntegerDigits[#, b]}, Function[{s, t}, Total@ Map[PadLeft[#, t] &, s]] @@ {#, Max[Length /@ #]} &@ MapIndexed[Join[d #, ConstantArray[0, First@ #2 - 1]] &, Reverse@ d]], # >= b &], b++]; b] &, 79, 0] (* Michael De Vlieger, Nov 25 2018 *) PROG (PARI) a(n) = for (b=2, oo, my (d=if(n==0, , digits(n, b))); if (vecmax(d)^2

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 15:04 EDT 2021. Contains 347607 sequences. (Running on oeis4.)